sreejith8100
commited on
Commit
•
d01ae8f
1
Parent(s):
6d9a5c2
End of training
Browse files- README.md +27 -25
- pytorch_model.bin +1 -1
README.md
CHANGED
@@ -14,14 +14,16 @@ should probably proofread and complete it, then remove this comment. -->
|
|
14 |
|
15 |
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the None dataset.
|
16 |
It achieves the following results on the evaluation set:
|
17 |
-
- Loss: 0.
|
18 |
-
-
|
19 |
-
-
|
20 |
-
-
|
21 |
-
-
|
22 |
-
-
|
23 |
-
- Overall
|
24 |
-
- Overall
|
|
|
|
|
25 |
|
26 |
## Model description
|
27 |
|
@@ -50,23 +52,23 @@ The following hyperparameters were used during training:
|
|
50 |
|
51 |
### Training results
|
52 |
|
53 |
-
| Training Loss | Epoch | Step | Validation Loss |
|
54 |
-
|
55 |
-
|
|
56 |
-
|
|
57 |
-
|
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
|
71 |
|
72 |
### Framework versions
|
|
|
14 |
|
15 |
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the None dataset.
|
16 |
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 0.0048
|
18 |
+
- Ame: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19}
|
19 |
+
- Andom number: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19}
|
20 |
+
- Ather Name: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19}
|
21 |
+
- Lace Of Birth: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 5}
|
22 |
+
- Other Name: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19}
|
23 |
+
- Overall Precision: 1.0
|
24 |
+
- Overall Recall: 1.0
|
25 |
+
- Overall F1: 1.0
|
26 |
+
- Overall Accuracy: 1.0
|
27 |
|
28 |
## Model description
|
29 |
|
|
|
52 |
|
53 |
### Training results
|
54 |
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Ame | Andom number | Ather Name | Itle | Lace Of Birth | Other Name | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------:|:-------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
57 |
+
| 2.1325 | 1.0 | 6 | 1.3047 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 19} | {'precision': 1.0, 'recall': 0.05263157894736842, 'f1': 0.1, 'number': 19} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 19} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 0} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 19} | 0.0667 | 0.0123 | 0.0208 | 0.7927 |
|
58 |
+
| 0.956 | 2.0 | 12 | 0.5955 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 19} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 19} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 19} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 19} | 0.0 | 0.0 | 0.0 | 0.7967 |
|
59 |
+
| 0.5243 | 3.0 | 18 | 0.3361 | {'precision': 0.4358974358974359, 'recall': 0.8947368421052632, 'f1': 0.5862068965517242, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 19} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5} | {'precision': 0.875, 'recall': 0.3684210526315789, 'f1': 0.5185185185185185, 'number': 19}| 0.6515 | 0.5309 | 0.5850 | 0.9228 |
|
60 |
+
| 0.3127 | 4.0 | 24 | 0.1808 | {'precision': 0.76, 'recall': 1.0, 'f1': 0.8636363636363636, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 0.2631578947368421, 'f1': 0.4166666666666667, 'number': 19} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5} | {'precision': 0.6296296296296297, 'recall': 0.8947368421052632, 'f1': 0.7391304347826088, 'number': 19}| 0.7895 | 0.7407 | 0.7643 | 0.9573 |
|
61 |
+
| 0.1878 | 5.0 | 30 | 0.1083 | {'precision': 0.8636363636363636, 'recall': 1.0, 'f1': 0.9268292682926829, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 0.9333333333333333, 'recall': 0.7368421052631579, 'f1': 0.8235294117647058, 'number': 19} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5} | {'precision': 0.782608695652174, 'recall': 0.9473684210526315, 'f1': 0.8571428571428571, 'number': 19}| 0.8861 | 0.8642 | 0.8750 | 0.9776 |
|
62 |
+
| 0.1243 | 6.0 | 36 | 0.0646 | {'precision': 0.8636363636363636, 'recall': 1.0, 'f1': 0.9268292682926829, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 0.95, 'recall': 1.0, 'f1': 0.9743589743589743, 'number': 19} | {'precision': 1.0, 'recall': 0.2, 'f1': 0.33333333333333337, 'number': 5}| {'precision': 1.0, 'recall': 0.9473684210526315, 'f1': 0.972972972972973, 'number': 19}| 0.95 | 0.9383 | 0.9441 | 0.9898 |
|
63 |
+
| 0.0885 | 7.0 | 42 | 0.0352 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 5} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | 1.0 | 1.0 | 1.0 | 1.0 |
|
64 |
+
| 0.0559 | 8.0 | 48 | 0.0190 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 5} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | 1.0 | 1.0 | 1.0 | 1.0 |
|
65 |
+
| 0.0356 | 9.0 | 54 | 0.0123 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 5} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | 1.0 | 1.0 | 1.0 | 1.0 |
|
66 |
+
| 0.0259 | 10.0 | 60 | 0.0091 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 5} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | 1.0 | 1.0 | 1.0 | 1.0 |
|
67 |
+
| 0.0209 | 11.0 | 66 | 0.0071 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 5} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | 1.0 | 1.0 | 1.0 | 1.0 |
|
68 |
+
| 0.0185 | 12.0 | 72 | 0.0060 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 5} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | 1.0 | 1.0 | 1.0 | 1.0 |
|
69 |
+
| 0.0169 | 13.0 | 78 | 0.0053 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 5} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | 1.0 | 1.0 | 1.0 | 1.0 |
|
70 |
+
| 0.0165 | 14.0 | 84 | 0.0049 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 5} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | 1.0 | 1.0 | 1.0 | 1.0 |
|
71 |
+
| 0.0197 | 15.0 | 90 | 0.0048 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 5} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 19} | 1.0 | 1.0 | 1.0 | 1.0 |
|
72 |
|
73 |
|
74 |
### Framework versions
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 450607041
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a6a790f2952fbf43536f48e7992bf50026aff6e08f2eca5a8bbd07e0a4cbede8
|
3 |
size 450607041
|