---
base_model: intfloat/multilingual-e5-small
datasets: []
language: []
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1273
- loss:OnlineContrastiveLoss
widget:
- source_sentence: Where can I buy organic vegetables?
sentences:
- Primary export product of Saudi Arabia
- Share info about Amazon
- Where can I buy organic fruits?
- source_sentence: How to open a bank account in the UK?
sentences:
- Steps to open a bank account in the United Kingdom
- How many weeks in a month?
- What is the process for turning in an expense report?
- source_sentence: What is the population of Tokyo?
sentences:
- What is the smallest planet in the solar system?
- Author of the play 'Hamlet'
- What is the population of Osaka?
- source_sentence: How to visit the Great Wall of China?
sentences:
- Where can I buy a new laptop?
- How do I close a bank account?
- Guide to visiting the Great Wall of China
- source_sentence: Who is the President of the United States?
sentences:
- What is the velocity of sound?
- Who is the current US President?
- History of the Byzantine Empire
model-index:
- name: SentenceTransformer based on intfloat/multilingual-e5-small
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: pair class dev
type: pair-class-dev
metrics:
- type: cosine_accuracy
value: 0.6206896551724138
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.9036016464233398
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.7192575406032483
name: Cosine F1
- type: cosine_f1_threshold
value: 0.9036016464233398
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.5827067669172933
name: Cosine Precision
- type: cosine_recall
value: 0.9393939393939394
name: Cosine Recall
- type: cosine_ap
value: 0.6366493234478966
name: Cosine Ap
- type: dot_accuracy
value: 0.6206896551724138
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 0.9036016464233398
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.7192575406032483
name: Dot F1
- type: dot_f1_threshold
value: 0.9036016464233398
name: Dot F1 Threshold
- type: dot_precision
value: 0.5827067669172933
name: Dot Precision
- type: dot_recall
value: 0.9393939393939394
name: Dot Recall
- type: dot_ap
value: 0.6366493234478966
name: Dot Ap
- type: manhattan_accuracy
value: 0.6175548589341693
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 6.501791000366211
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.7232142857142857
name: Manhattan F1
- type: manhattan_f1_threshold
value: 7.142887115478516
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.5724381625441696
name: Manhattan Precision
- type: manhattan_recall
value: 0.9818181818181818
name: Manhattan Recall
- type: manhattan_ap
value: 0.64137074777591
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.6206896551724138
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 0.43908166885375977
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.7192575406032483
name: Euclidean F1
- type: euclidean_f1_threshold
value: 0.43908166885375977
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.5827067669172933
name: Euclidean Precision
- type: euclidean_recall
value: 0.9393939393939394
name: Euclidean Recall
- type: euclidean_ap
value: 0.6366493234478966
name: Euclidean Ap
- type: max_accuracy
value: 0.6206896551724138
name: Max Accuracy
- type: max_accuracy_threshold
value: 6.501791000366211
name: Max Accuracy Threshold
- type: max_f1
value: 0.7232142857142857
name: Max F1
- type: max_f1_threshold
value: 7.142887115478516
name: Max F1 Threshold
- type: max_precision
value: 0.5827067669172933
name: Max Precision
- type: max_recall
value: 0.9818181818181818
name: Max Recall
- type: max_ap
value: 0.64137074777591
name: Max Ap
- task:
type: binary-classification
name: Binary Classification
dataset:
name: pair class test
type: pair-class-test
metrics:
- type: cosine_accuracy
value: 0.8934169278996865
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.7770164012908936
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.9034090909090907
name: Cosine F1
- type: cosine_f1_threshold
value: 0.7750071287155151
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.8502673796791443
name: Cosine Precision
- type: cosine_recall
value: 0.9636363636363636
name: Cosine Recall
- type: cosine_ap
value: 0.9467412947017336
name: Cosine Ap
- type: dot_accuracy
value: 0.8934169278996865
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 0.7770164012908936
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.9034090909090907
name: Dot F1
- type: dot_f1_threshold
value: 0.7750071287155151
name: Dot F1 Threshold
- type: dot_precision
value: 0.8502673796791443
name: Dot Precision
- type: dot_recall
value: 0.9636363636363636
name: Dot Recall
- type: dot_ap
value: 0.9467412947017336
name: Dot Ap
- type: manhattan_accuracy
value: 0.890282131661442
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 9.908584594726562
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.9002849002849003
name: Manhattan F1
- type: manhattan_f1_threshold
value: 10.437429428100586
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.8494623655913979
name: Manhattan Precision
- type: manhattan_recall
value: 0.9575757575757575
name: Manhattan Recall
- type: manhattan_ap
value: 0.9451852140210413
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.8934169278996865
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 0.6678076386451721
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.9034090909090907
name: Euclidean F1
- type: euclidean_f1_threshold
value: 0.6708062887191772
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.8502673796791443
name: Euclidean Precision
- type: euclidean_recall
value: 0.9636363636363636
name: Euclidean Recall
- type: euclidean_ap
value: 0.9467412947017336
name: Euclidean Ap
- type: max_accuracy
value: 0.8934169278996865
name: Max Accuracy
- type: max_accuracy_threshold
value: 9.908584594726562
name: Max Accuracy Threshold
- type: max_f1
value: 0.9034090909090907
name: Max F1
- type: max_f1_threshold
value: 10.437429428100586
name: Max F1 Threshold
- type: max_precision
value: 0.8502673796791443
name: Max Precision
- type: max_recall
value: 0.9636363636363636
name: Max Recall
- type: max_ap
value: 0.9467412947017336
name: Max Ap
---
# SentenceTransformer based on intfloat/multilingual-e5-small
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("srikarvar/fine_tuned_model_4")
# Run inference
sentences = [
'Who is the President of the United States?',
'Who is the current US President?',
'What is the velocity of sound?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Binary Classification
* Dataset: `pair-class-dev`
* Evaluated with [BinaryClassificationEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | Value |
|:-----------------------------|:-----------|
| cosine_accuracy | 0.6207 |
| cosine_accuracy_threshold | 0.9036 |
| cosine_f1 | 0.7193 |
| cosine_f1_threshold | 0.9036 |
| cosine_precision | 0.5827 |
| cosine_recall | 0.9394 |
| cosine_ap | 0.6366 |
| dot_accuracy | 0.6207 |
| dot_accuracy_threshold | 0.9036 |
| dot_f1 | 0.7193 |
| dot_f1_threshold | 0.9036 |
| dot_precision | 0.5827 |
| dot_recall | 0.9394 |
| dot_ap | 0.6366 |
| manhattan_accuracy | 0.6176 |
| manhattan_accuracy_threshold | 6.5018 |
| manhattan_f1 | 0.7232 |
| manhattan_f1_threshold | 7.1429 |
| manhattan_precision | 0.5724 |
| manhattan_recall | 0.9818 |
| manhattan_ap | 0.6414 |
| euclidean_accuracy | 0.6207 |
| euclidean_accuracy_threshold | 0.4391 |
| euclidean_f1 | 0.7193 |
| euclidean_f1_threshold | 0.4391 |
| euclidean_precision | 0.5827 |
| euclidean_recall | 0.9394 |
| euclidean_ap | 0.6366 |
| max_accuracy | 0.6207 |
| max_accuracy_threshold | 6.5018 |
| max_f1 | 0.7232 |
| max_f1_threshold | 7.1429 |
| max_precision | 0.5827 |
| max_recall | 0.9818 |
| **max_ap** | **0.6414** |
#### Binary Classification
* Dataset: `pair-class-test`
* Evaluated with [BinaryClassificationEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | Value |
|:-----------------------------|:-----------|
| cosine_accuracy | 0.8934 |
| cosine_accuracy_threshold | 0.777 |
| cosine_f1 | 0.9034 |
| cosine_f1_threshold | 0.775 |
| cosine_precision | 0.8503 |
| cosine_recall | 0.9636 |
| cosine_ap | 0.9467 |
| dot_accuracy | 0.8934 |
| dot_accuracy_threshold | 0.777 |
| dot_f1 | 0.9034 |
| dot_f1_threshold | 0.775 |
| dot_precision | 0.8503 |
| dot_recall | 0.9636 |
| dot_ap | 0.9467 |
| manhattan_accuracy | 0.8903 |
| manhattan_accuracy_threshold | 9.9086 |
| manhattan_f1 | 0.9003 |
| manhattan_f1_threshold | 10.4374 |
| manhattan_precision | 0.8495 |
| manhattan_recall | 0.9576 |
| manhattan_ap | 0.9452 |
| euclidean_accuracy | 0.8934 |
| euclidean_accuracy_threshold | 0.6678 |
| euclidean_f1 | 0.9034 |
| euclidean_f1_threshold | 0.6708 |
| euclidean_precision | 0.8503 |
| euclidean_recall | 0.9636 |
| euclidean_ap | 0.9467 |
| max_accuracy | 0.8934 |
| max_accuracy_threshold | 9.9086 |
| max_f1 | 0.9034 |
| max_f1_threshold | 10.4374 |
| max_precision | 0.8503 |
| max_recall | 0.9636 |
| **max_ap** | **0.9467** |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 1,273 training samples
* Columns: sentence1
, label
, and sentence2
* Approximate statistics based on the first 1000 samples:
| | sentence1 | label | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | int | string |
| details |
What are the main ingredients in a traditional pizza Margherita?
| 1
| What ingredients are used in a classic pizza Margherita?
|
| Release date of the iPhone 14
| 0
| Release date of the iPhone 13
|
| Who won the first Nobel Prize in Literature?
| 0
| Who won the first Nobel Prize in Peace?
|
* Loss: [OnlineContrastiveLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
### Evaluation Dataset
#### Unnamed Dataset
* Size: 319 evaluation samples
* Columns: sentence1
, label
, and sentence2
* Approximate statistics based on the first 1000 samples:
| | sentence1 | label | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | int | string |
| details | How many bones are in the human body?
| 1
| Total bones in an adult human
|
| What is the price of an iPhone 12?
| 0
| What is the price of an iPhone 11?
|
| What are the different types of renewable energy?
| 1
| What are the various forms of renewable energy?
|
* Loss: [OnlineContrastiveLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `gradient_accumulation_steps`: 2
- `num_train_epochs`: 4
- `warmup_ratio`: 0.1
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters