srikarvar commited on
Commit
ea98e05
1 Parent(s): 9db1ef9

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,462 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: intfloat/multilingual-e5-small
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ metrics:
7
+ - cosine_accuracy
8
+ - dot_accuracy
9
+ - manhattan_accuracy
10
+ - euclidean_accuracy
11
+ - max_accuracy
12
+ pipeline_tag: sentence-similarity
13
+ tags:
14
+ - sentence-transformers
15
+ - sentence-similarity
16
+ - feature-extraction
17
+ - generated_from_trainer
18
+ - dataset_size:546
19
+ - loss:TripletLoss
20
+ widget:
21
+ - source_sentence: How to cook a turkey?
22
+ sentences:
23
+ - How to make a turkey sandwich?
24
+ - World's biggest desert by area
25
+ - Steps to roast a turkey
26
+ - source_sentence: What is the best way to learn a new language?
27
+ sentences:
28
+ - Author of the play 'Hamlet'
29
+ - What is the fastest way to travel?
30
+ - How can I effectively learn a new language?
31
+ - source_sentence: Who wrote 'To Kill a Mockingbird'?
32
+ sentences:
33
+ - Who wrote 'The Great Gatsby'?
34
+ - How can I effectively save money?
35
+ - Author of 'To Kill a Mockingbird'
36
+ - source_sentence: Who was the first person to climb Mount Everest?
37
+ sentences:
38
+ - Steps to visit the Great Wall of China
39
+ - Who was the first person to climb K2?
40
+ - First climber to reach the summit of Everest
41
+ - source_sentence: What is the capital city of Canada?
42
+ sentences:
43
+ - First circumnavigator of the globe
44
+ - What is the capital of Canada?
45
+ - What is the capital city of Australia?
46
+ model-index:
47
+ - name: SentenceTransformer based on intfloat/multilingual-e5-small
48
+ results:
49
+ - task:
50
+ type: triplet
51
+ name: Triplet
52
+ dataset:
53
+ name: triplet validation
54
+ type: triplet-validation
55
+ metrics:
56
+ - type: cosine_accuracy
57
+ value: 0.9836065573770492
58
+ name: Cosine Accuracy
59
+ - type: dot_accuracy
60
+ value: 0.01639344262295082
61
+ name: Dot Accuracy
62
+ - type: manhattan_accuracy
63
+ value: 0.9836065573770492
64
+ name: Manhattan Accuracy
65
+ - type: euclidean_accuracy
66
+ value: 0.9836065573770492
67
+ name: Euclidean Accuracy
68
+ - type: max_accuracy
69
+ value: 0.9836065573770492
70
+ name: Max Accuracy
71
+ ---
72
+
73
+ # SentenceTransformer based on intfloat/multilingual-e5-small
74
+
75
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
76
+
77
+ ## Model Details
78
+
79
+ ### Model Description
80
+ - **Model Type:** Sentence Transformer
81
+ - **Base model:** [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) <!-- at revision fd1525a9fd15316a2d503bf26ab031a61d056e98 -->
82
+ - **Maximum Sequence Length:** 512 tokens
83
+ - **Output Dimensionality:** 384 tokens
84
+ - **Similarity Function:** Cosine Similarity
85
+ <!-- - **Training Dataset:** Unknown -->
86
+ <!-- - **Language:** Unknown -->
87
+ <!-- - **License:** Unknown -->
88
+
89
+ ### Model Sources
90
+
91
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
92
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
93
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
94
+
95
+ ### Full Model Architecture
96
+
97
+ ```
98
+ SentenceTransformer(
99
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
100
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
101
+ (2): Normalize()
102
+ )
103
+ ```
104
+
105
+ ## Usage
106
+
107
+ ### Direct Usage (Sentence Transformers)
108
+
109
+ First install the Sentence Transformers library:
110
+
111
+ ```bash
112
+ pip install -U sentence-transformers
113
+ ```
114
+
115
+ Then you can load this model and run inference.
116
+ ```python
117
+ from sentence_transformers import SentenceTransformer
118
+
119
+ # Download from the 🤗 Hub
120
+ model = SentenceTransformer("srikarvar/multilingual-e5-small-triplet-final")
121
+ # Run inference
122
+ sentences = [
123
+ 'What is the capital city of Canada?',
124
+ 'What is the capital of Canada?',
125
+ 'What is the capital city of Australia?',
126
+ ]
127
+ embeddings = model.encode(sentences)
128
+ print(embeddings.shape)
129
+ # [3, 384]
130
+
131
+ # Get the similarity scores for the embeddings
132
+ similarities = model.similarity(embeddings, embeddings)
133
+ print(similarities.shape)
134
+ # [3, 3]
135
+ ```
136
+
137
+ <!--
138
+ ### Direct Usage (Transformers)
139
+
140
+ <details><summary>Click to see the direct usage in Transformers</summary>
141
+
142
+ </details>
143
+ -->
144
+
145
+ <!--
146
+ ### Downstream Usage (Sentence Transformers)
147
+
148
+ You can finetune this model on your own dataset.
149
+
150
+ <details><summary>Click to expand</summary>
151
+
152
+ </details>
153
+ -->
154
+
155
+ <!--
156
+ ### Out-of-Scope Use
157
+
158
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
159
+ -->
160
+
161
+ ## Evaluation
162
+
163
+ ### Metrics
164
+
165
+ #### Triplet
166
+ * Dataset: `triplet-validation`
167
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
168
+
169
+ | Metric | Value |
170
+ |:-------------------|:-----------|
171
+ | cosine_accuracy | 0.9836 |
172
+ | dot_accuracy | 0.0164 |
173
+ | manhattan_accuracy | 0.9836 |
174
+ | euclidean_accuracy | 0.9836 |
175
+ | **max_accuracy** | **0.9836** |
176
+
177
+ <!--
178
+ ## Bias, Risks and Limitations
179
+
180
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
181
+ -->
182
+
183
+ <!--
184
+ ### Recommendations
185
+
186
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
187
+ -->
188
+
189
+ ## Training Details
190
+
191
+ ### Training Dataset
192
+
193
+ #### Unnamed Dataset
194
+
195
+
196
+ * Size: 546 training samples
197
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
198
+ * Approximate statistics based on the first 1000 samples:
199
+ | | anchor | positive | negative |
200
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
201
+ | type | string | string | string |
202
+ | details | <ul><li>min: 6 tokens</li><li>mean: 10.78 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.52 tokens</li><li>max: 19 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.75 tokens</li><li>max: 22 tokens</li></ul> |
203
+ * Samples:
204
+ | anchor | positive | negative |
205
+ |:-----------------------------------------------------|:----------------------------------------------|:-------------------------------------------------------|
206
+ | <code>What is the capital of Brazil?</code> | <code>Capital city of Brazil</code> | <code>What is the capital of Argentina?</code> |
207
+ | <code>How do I install Python on my computer?</code> | <code>How do I set up Python on my PC?</code> | <code>How do I uninstall Python on my computer?</code> |
208
+ | <code>How do I apply for a credit card?</code> | <code>How do I get a credit card?</code> | <code>How do I cancel a credit card?</code> |
209
+ * Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
210
+ ```json
211
+ {
212
+ "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
213
+ "triplet_margin": 5
214
+ }
215
+ ```
216
+
217
+ ### Evaluation Dataset
218
+
219
+ #### Unnamed Dataset
220
+
221
+
222
+ * Size: 61 evaluation samples
223
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
224
+ * Approximate statistics based on the first 1000 samples:
225
+ | | anchor | positive | negative |
226
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
227
+ | type | string | string | string |
228
+ | details | <ul><li>min: 7 tokens</li><li>mean: 10.66 tokens</li><li>max: 16 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 9.43 tokens</li><li>max: 14 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.54 tokens</li><li>max: 17 tokens</li></ul> |
229
+ * Samples:
230
+ | anchor | positive | negative |
231
+ |:---------------------------------------------------|:---------------------------------------------------------|:-----------------------------------------------------|
232
+ | <code>How to create a podcast?</code> | <code>Steps to start a podcast</code> | <code>How to create a vlog?</code> |
233
+ | <code>How many states are there in the USA?</code> | <code>Total number of states in the United States</code> | <code>How many provinces are there in Canada?</code> |
234
+ | <code>What is the population of India?</code> | <code>How many people live in India?</code> | <code>What is the population of China?</code> |
235
+ * Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
236
+ ```json
237
+ {
238
+ "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
239
+ "triplet_margin": 5
240
+ }
241
+ ```
242
+
243
+ ### Training Hyperparameters
244
+ #### Non-Default Hyperparameters
245
+
246
+ - `eval_strategy`: epoch
247
+ - `per_device_train_batch_size`: 16
248
+ - `per_device_eval_batch_size`: 16
249
+ - `gradient_accumulation_steps`: 2
250
+ - `learning_rate`: 5e-06
251
+ - `weight_decay`: 0.01
252
+ - `num_train_epochs`: 12
253
+ - `lr_scheduler_type`: cosine
254
+ - `warmup_steps`: 50
255
+ - `load_best_model_at_end`: True
256
+ - `optim`: adamw_torch_fused
257
+
258
+ #### All Hyperparameters
259
+ <details><summary>Click to expand</summary>
260
+
261
+ - `overwrite_output_dir`: False
262
+ - `do_predict`: False
263
+ - `eval_strategy`: epoch
264
+ - `prediction_loss_only`: True
265
+ - `per_device_train_batch_size`: 16
266
+ - `per_device_eval_batch_size`: 16
267
+ - `per_gpu_train_batch_size`: None
268
+ - `per_gpu_eval_batch_size`: None
269
+ - `gradient_accumulation_steps`: 2
270
+ - `eval_accumulation_steps`: None
271
+ - `learning_rate`: 5e-06
272
+ - `weight_decay`: 0.01
273
+ - `adam_beta1`: 0.9
274
+ - `adam_beta2`: 0.999
275
+ - `adam_epsilon`: 1e-08
276
+ - `max_grad_norm`: 1.0
277
+ - `num_train_epochs`: 12
278
+ - `max_steps`: -1
279
+ - `lr_scheduler_type`: cosine
280
+ - `lr_scheduler_kwargs`: {}
281
+ - `warmup_ratio`: 0.0
282
+ - `warmup_steps`: 50
283
+ - `log_level`: passive
284
+ - `log_level_replica`: warning
285
+ - `log_on_each_node`: True
286
+ - `logging_nan_inf_filter`: True
287
+ - `save_safetensors`: True
288
+ - `save_on_each_node`: False
289
+ - `save_only_model`: False
290
+ - `restore_callback_states_from_checkpoint`: False
291
+ - `no_cuda`: False
292
+ - `use_cpu`: False
293
+ - `use_mps_device`: False
294
+ - `seed`: 42
295
+ - `data_seed`: None
296
+ - `jit_mode_eval`: False
297
+ - `use_ipex`: False
298
+ - `bf16`: False
299
+ - `fp16`: False
300
+ - `fp16_opt_level`: O1
301
+ - `half_precision_backend`: auto
302
+ - `bf16_full_eval`: False
303
+ - `fp16_full_eval`: False
304
+ - `tf32`: None
305
+ - `local_rank`: 0
306
+ - `ddp_backend`: None
307
+ - `tpu_num_cores`: None
308
+ - `tpu_metrics_debug`: False
309
+ - `debug`: []
310
+ - `dataloader_drop_last`: False
311
+ - `dataloader_num_workers`: 0
312
+ - `dataloader_prefetch_factor`: None
313
+ - `past_index`: -1
314
+ - `disable_tqdm`: False
315
+ - `remove_unused_columns`: True
316
+ - `label_names`: None
317
+ - `load_best_model_at_end`: True
318
+ - `ignore_data_skip`: False
319
+ - `fsdp`: []
320
+ - `fsdp_min_num_params`: 0
321
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
322
+ - `fsdp_transformer_layer_cls_to_wrap`: None
323
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
324
+ - `deepspeed`: None
325
+ - `label_smoothing_factor`: 0.0
326
+ - `optim`: adamw_torch_fused
327
+ - `optim_args`: None
328
+ - `adafactor`: False
329
+ - `group_by_length`: False
330
+ - `length_column_name`: length
331
+ - `ddp_find_unused_parameters`: None
332
+ - `ddp_bucket_cap_mb`: None
333
+ - `ddp_broadcast_buffers`: False
334
+ - `dataloader_pin_memory`: True
335
+ - `dataloader_persistent_workers`: False
336
+ - `skip_memory_metrics`: True
337
+ - `use_legacy_prediction_loop`: False
338
+ - `push_to_hub`: False
339
+ - `resume_from_checkpoint`: None
340
+ - `hub_model_id`: None
341
+ - `hub_strategy`: every_save
342
+ - `hub_private_repo`: False
343
+ - `hub_always_push`: False
344
+ - `gradient_checkpointing`: False
345
+ - `gradient_checkpointing_kwargs`: None
346
+ - `include_inputs_for_metrics`: False
347
+ - `eval_do_concat_batches`: True
348
+ - `fp16_backend`: auto
349
+ - `push_to_hub_model_id`: None
350
+ - `push_to_hub_organization`: None
351
+ - `mp_parameters`:
352
+ - `auto_find_batch_size`: False
353
+ - `full_determinism`: False
354
+ - `torchdynamo`: None
355
+ - `ray_scope`: last
356
+ - `ddp_timeout`: 1800
357
+ - `torch_compile`: False
358
+ - `torch_compile_backend`: None
359
+ - `torch_compile_mode`: None
360
+ - `dispatch_batches`: None
361
+ - `split_batches`: None
362
+ - `include_tokens_per_second`: False
363
+ - `include_num_input_tokens_seen`: False
364
+ - `neftune_noise_alpha`: None
365
+ - `optim_target_modules`: None
366
+ - `batch_eval_metrics`: False
367
+ - `batch_sampler`: batch_sampler
368
+ - `multi_dataset_batch_sampler`: proportional
369
+
370
+ </details>
371
+
372
+ ### Training Logs
373
+ | Epoch | Step | Training Loss | loss | triplet-validation_max_accuracy |
374
+ |:-----------:|:-------:|:-------------:|:----------:|:-------------------------------:|
375
+ | 0.5714 | 10 | 4.9735 | - | - |
376
+ | 0.9714 | 17 | - | 4.9198 | - |
377
+ | 1.1429 | 20 | 4.9596 | - | - |
378
+ | 1.7143 | 30 | 4.9357 | - | - |
379
+ | 2.0 | 35 | - | 4.8494 | - |
380
+ | 2.2857 | 40 | 4.896 | - | - |
381
+ | 2.8571 | 50 | 4.8587 | - | - |
382
+ | 2.9714 | 52 | - | 4.7479 | - |
383
+ | 3.4286 | 60 | 4.8265 | - | - |
384
+ | 4.0 | 70 | 4.7706 | 4.6374 | - |
385
+ | 4.5714 | 80 | 4.7284 | - | - |
386
+ | 4.9714 | 87 | - | 4.5422 | - |
387
+ | 5.1429 | 90 | 4.6767 | - | - |
388
+ | 5.7143 | 100 | 4.653 | - | - |
389
+ | 6.0 | 105 | - | 4.4474 | - |
390
+ | 6.2857 | 110 | 4.6234 | - | - |
391
+ | 6.8571 | 120 | 4.5741 | - | - |
392
+ | 6.9714 | 122 | - | 4.3708 | - |
393
+ | 7.4286 | 130 | 4.5475 | - | - |
394
+ | 8.0 | 140 | 4.5206 | 4.3162 | - |
395
+ | 8.5714 | 150 | 4.517 | - | - |
396
+ | 8.9714 | 157 | - | 4.2891 | - |
397
+ | 9.1429 | 160 | 4.4587 | - | - |
398
+ | 9.7143 | 170 | 4.4879 | - | - |
399
+ | 10.0 | 175 | - | 4.2755 | - |
400
+ | 10.2857 | 180 | 4.4625 | - | - |
401
+ | 10.8571 | 190 | 4.489 | - | - |
402
+ | 10.9714 | 192 | - | 4.2716 | - |
403
+ | 11.4286 | 200 | 4.4693 | - | - |
404
+ | **11.6571** | **204** | **-** | **4.2713** | **0.9836** |
405
+
406
+ * The bold row denotes the saved checkpoint.
407
+
408
+ ### Framework Versions
409
+ - Python: 3.10.12
410
+ - Sentence Transformers: 3.0.1
411
+ - Transformers: 4.41.2
412
+ - PyTorch: 2.1.2+cu121
413
+ - Accelerate: 0.32.1
414
+ - Datasets: 2.19.1
415
+ - Tokenizers: 0.19.1
416
+
417
+ ## Citation
418
+
419
+ ### BibTeX
420
+
421
+ #### Sentence Transformers
422
+ ```bibtex
423
+ @inproceedings{reimers-2019-sentence-bert,
424
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
425
+ author = "Reimers, Nils and Gurevych, Iryna",
426
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
427
+ month = "11",
428
+ year = "2019",
429
+ publisher = "Association for Computational Linguistics",
430
+ url = "https://arxiv.org/abs/1908.10084",
431
+ }
432
+ ```
433
+
434
+ #### TripletLoss
435
+ ```bibtex
436
+ @misc{hermans2017defense,
437
+ title={In Defense of the Triplet Loss for Person Re-Identification},
438
+ author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
439
+ year={2017},
440
+ eprint={1703.07737},
441
+ archivePrefix={arXiv},
442
+ primaryClass={cs.CV}
443
+ }
444
+ ```
445
+
446
+ <!--
447
+ ## Glossary
448
+
449
+ *Clearly define terms in order to be accessible across audiences.*
450
+ -->
451
+
452
+ <!--
453
+ ## Model Card Authors
454
+
455
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
456
+ -->
457
+
458
+ <!--
459
+ ## Model Card Contact
460
+
461
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
462
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "intfloat/multilingual-e5-small",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 1536,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "tokenizer_class": "XLMRobertaTokenizer",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.41.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 250037
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.1.2+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d5a821a991c9c52f60d15079f0d3b8e4da824bbbf97b168d49fff9b598c80d36
3
+ size 470637416
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef04f2b385d1514f500e779207ace0f53e30895ce37563179e29f4022d28ca38
3
+ size 17083053
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "model_max_length": 512,
50
+ "pad_token": "<pad>",
51
+ "sep_token": "</s>",
52
+ "sp_model_kwargs": {},
53
+ "tokenizer_class": "XLMRobertaTokenizer",
54
+ "unk_token": "<unk>"
55
+ }