srimanth-d commited on
Commit
5364fe1
1 Parent(s): d5f1f2e

Upload modeling_got.py

Browse files
Files changed (1) hide show
  1. modeling_got.py +881 -0
modeling_got.py ADDED
@@ -0,0 +1,881 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import Qwen2Config, Qwen2Model, Qwen2ForCausalLM, StoppingCriteria, TextStreamer
2
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
3
+ from typing import List, Optional, Tuple, Union
4
+ from transformers.cache_utils import Cache
5
+ import requests
6
+ from PIL import Image
7
+ from io import BytesIO
8
+ import torch
9
+ import torch.nn as nn
10
+ from torch.nn import CrossEntropyLoss
11
+ from .got_vision_b import build_GOT_vit_b
12
+ from torchvision import transforms
13
+ from torchvision.transforms.functional import InterpolationMode
14
+ import dataclasses
15
+ ###
16
+
17
+ DEFAULT_IMAGE_TOKEN = "<image>"
18
+ DEFAULT_IMAGE_PATCH_TOKEN = '<imgpad>'
19
+ DEFAULT_IM_START_TOKEN = '<img>'
20
+ DEFAULT_IM_END_TOKEN = '</img>'
21
+
22
+ from enum import auto, Enum
23
+ class SeparatorStyle(Enum):
24
+ """Different separator style."""
25
+ SINGLE = auto()
26
+ TWO = auto()
27
+ MPT = auto()
28
+
29
+
30
+ @dataclasses.dataclass
31
+ class Conversation:
32
+ """A class that keeps all conversation history."""
33
+ system: str
34
+ roles: List[str]
35
+ messages: List[List[str]]
36
+ offset: int
37
+ sep_style: SeparatorStyle = SeparatorStyle.SINGLE
38
+ sep: str = "<|im_end|>"
39
+ sep2: str = None
40
+ version: str = "Unknown"
41
+
42
+ skip_next: bool = False
43
+
44
+ def get_prompt(self):
45
+ if self.sep_style == SeparatorStyle.SINGLE:
46
+ ret = self.system + self.sep + '\n'
47
+ for role, message in self.messages:
48
+ if message:
49
+ if type(message) is tuple:
50
+ message, _, _ = message
51
+ ret += role + ": " + message + self.sep
52
+ else:
53
+ ret += role + ":"
54
+ return ret
55
+ elif self.sep_style == SeparatorStyle.TWO:
56
+ seps = [self.sep, self.sep2]
57
+ ret = self.system + seps[0]
58
+ for i, (role, message) in enumerate(self.messages):
59
+ if message:
60
+ if type(message) is tuple:
61
+ message, _, _ = message
62
+ ret += role + ": " + message + seps[i % 2]
63
+ else:
64
+ ret += role + ":"
65
+ return ret
66
+ if self.sep_style == SeparatorStyle.MPT:
67
+ if self.system:
68
+ ret = self.system + self.sep
69
+ else:
70
+ ret = ''
71
+ for role, message in self.messages:
72
+ if message:
73
+ if type(message) is tuple:
74
+ message, _, _ = message
75
+ ret += role + message + self.sep
76
+ else:
77
+ ret += role
78
+ return ret
79
+ else:
80
+ raise ValueError(f"Invalid style: {self.sep_style}")
81
+
82
+
83
+ def append_message(self, role, message):
84
+ self.messages.append([role, message])
85
+
86
+ def copy(self):
87
+ return Conversation(
88
+ system=self.system,
89
+ roles=self.roles,
90
+ messages=[[x, y] for x, y in self.messages],
91
+ offset=self.offset,
92
+ sep_style=self.sep_style,
93
+ sep=self.sep,
94
+ sep2=self.sep2)
95
+
96
+
97
+
98
+ class KeywordsStoppingCriteria(StoppingCriteria):
99
+ def __init__(self, keywords, tokenizer, input_ids):
100
+ self.keywords = keywords
101
+ self.keyword_ids = [tokenizer(keyword).input_ids for keyword in keywords]
102
+ self.keyword_ids = [keyword_id[0] for keyword_id in self.keyword_ids if type(keyword_id) is list and len(keyword_id) == 1]
103
+ self.tokenizer = tokenizer
104
+ self.start_len = None
105
+ self.input_ids = input_ids
106
+
107
+ def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
108
+ if self.start_len is None:
109
+ self.start_len = self.input_ids.shape[1]
110
+ else:
111
+ for keyword_id in self.keyword_ids:
112
+ if output_ids[0, -1] == keyword_id:
113
+ return True
114
+ outputs = self.tokenizer.batch_decode(output_ids[:, self.start_len:], skip_special_tokens=True)[0]
115
+ for keyword in self.keywords:
116
+ if keyword in outputs:
117
+ return True
118
+ return False
119
+
120
+
121
+ class GOTImageEvalProcessor:
122
+ def __init__(self, image_size=384, mean=None, std=None):
123
+ if mean is None:
124
+ mean = (0.48145466, 0.4578275, 0.40821073)
125
+ if std is None:
126
+ std = (0.26862954, 0.26130258, 0.27577711)
127
+
128
+ self.normalize = transforms.Normalize(mean, std)
129
+
130
+ self.transform = transforms.Compose(
131
+ [
132
+ transforms.Resize(
133
+ (image_size, image_size), interpolation=InterpolationMode.BICUBIC
134
+ ),
135
+ transforms.ToTensor(),
136
+ self.normalize,
137
+ ]
138
+ )
139
+ def __call__(self, item):
140
+ return self.transform(item)
141
+
142
+
143
+
144
+ class GOTConfig(Qwen2Config):
145
+ model_type = "GOT"
146
+
147
+
148
+ class GOTQwenModel(Qwen2Model):
149
+ config_class = GOTConfig
150
+
151
+ def __init__(self, config: Qwen2Config):
152
+ super(GOTQwenModel, self).__init__(config)
153
+
154
+ self.vision_tower_high = build_GOT_vit_b()
155
+
156
+ self.mm_projector_vary = nn.Linear(1024, 1024)
157
+
158
+
159
+ def initialize_vision_modules(
160
+ self,
161
+ vision_tower,
162
+ pretrained_stage1_model=None,
163
+ freeze_vision_tower=False,
164
+ use_im_start_end=False,
165
+ vision_select_layer=-1,
166
+ dtype=torch.float16,
167
+ device="cpu"
168
+ ):
169
+
170
+
171
+ image_processor_high = GOTImageEvalProcessor(image_size=1024)
172
+
173
+ self.vision_tower_high = self.vision_tower_high.to(dtype=dtype, device=device)
174
+
175
+ self.mm_projector_vary = self.mm_projector_vary.to(dtype=dtype, device=device)
176
+
177
+
178
+ image_token_len = 256
179
+
180
+ self.config.vision_tower = vision_tower
181
+ self.config.image_token_len = image_token_len
182
+
183
+ self.config.use_im_start_end = True
184
+
185
+ self.config.vision_select_layer = vision_select_layer
186
+ self.config.freeze_vision_tower = freeze_vision_tower
187
+
188
+ return dict(
189
+ image_processor_high=image_processor_high,
190
+ image_token_len=image_token_len,
191
+ )
192
+
193
+
194
+ def forward(
195
+ self,
196
+ input_ids: torch.LongTensor = None,
197
+ attention_mask: Optional[torch.Tensor] = None,
198
+ position_ids: Optional[torch.LongTensor] = None,
199
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
200
+ inputs_embeds: Optional[torch.FloatTensor] = None,
201
+ use_cache: Optional[bool] = None,
202
+ output_attentions: Optional[bool] = None,
203
+ output_hidden_states: Optional[bool] = None,
204
+ images: Optional[torch.FloatTensor] = None,
205
+ return_dict: Optional[bool] = None,
206
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
207
+
208
+ # HACK: replace back original embeddings for LLaVA pretraining
209
+ orig_embeds_params = getattr(self, 'orig_embeds_params', None)
210
+ if orig_embeds_params is not None:
211
+ with torch.no_grad():
212
+ self.get_input_embeddings().weight[:-self.num_new_tokens] = orig_embeds_params[:-self.num_new_tokens].data
213
+
214
+ if inputs_embeds is None:
215
+ inputs_embeds = self.embed_tokens(input_ids)
216
+
217
+
218
+ vision_tower_high = getattr(self, 'vision_tower_high', None)
219
+
220
+
221
+ if vision_tower_high is not None and (input_ids.shape[1] != 1 or self.training) and images is not None:
222
+ use_im_start_end = getattr(self.config, "use_im_start_end", -1)
223
+
224
+ vision_select_layer = getattr(self.config, "vision_select_layer", -1)
225
+ im_patch_token = getattr(self.config, "im_patch_token", -1)
226
+ im_start_token = getattr(self.config, "im_start_token", -1)
227
+ im_end_token = getattr(self.config, "im_end_token", -1)
228
+ freeze_vision_tower = getattr(self.config, "freeze_vision_tower", False)
229
+
230
+ im_patch_token = 151859
231
+
232
+ im_start_token = 151857
233
+
234
+ im_end_token = 151858
235
+
236
+ image_features = []
237
+
238
+ for image in images:
239
+ P, C, H, W = image.shape
240
+ if P == 1:
241
+ with torch.set_grad_enabled(False):
242
+ cnn_feature = vision_tower_high(image)
243
+ cnn_feature = cnn_feature.flatten(2).permute(0, 2, 1) # 256*1024
244
+ image_feature = self.mm_projector_vary(cnn_feature)
245
+ image_features.append(image_feature)
246
+
247
+ else:
248
+ image_patches = torch.unbind(image)
249
+ image_patches_features = []
250
+ for image_patch in image_patches:
251
+ image_p = torch.stack([image_patch])
252
+
253
+ with torch.set_grad_enabled(False):
254
+ cnn_feature_p = vision_tower_high(image_p)
255
+ cnn_feature_p = cnn_feature_p.flatten(2).permute(0, 2, 1)
256
+ image_feature_p = self.mm_projector_vary(cnn_feature_p)
257
+ image_patches_features.append(image_feature_p)
258
+ image_feature = torch.cat(image_patches_features, dim=1)
259
+ image_features.append(image_feature)
260
+
261
+
262
+ dummy_image_features_2 = torch.zeros(256, 1024, device=inputs_embeds.device, dtype=inputs_embeds.dtype)
263
+ dummy_image_features = dummy_image_features_2
264
+ use_im_start_end = True
265
+ new_input_embeds = []
266
+ for cur_input_ids, cur_input_embeds, cur_image_features in zip(input_ids, inputs_embeds, image_features):
267
+ if (cur_input_ids == im_patch_token).sum() == 0:
268
+ cur_input_embeds = cur_input_embeds + (0. * dummy_image_features).sum()
269
+ new_input_embeds.append(cur_input_embeds)
270
+ continue
271
+
272
+ if use_im_start_end:
273
+ if (cur_input_ids == im_start_token).sum() != (cur_input_ids == im_end_token).sum():
274
+ raise ValueError("The number of image start tokens and image end tokens should be the same.")
275
+
276
+ image_start_tokens = torch.where(cur_input_ids == im_start_token)[0]
277
+ for image_start_token_pos, per_cur_image_features in zip(image_start_tokens, cur_image_features):
278
+ per_cur_image_features = per_cur_image_features.to(device=cur_input_embeds.device)
279
+ num_patches = per_cur_image_features.shape[0]
280
+
281
+ if cur_input_ids[image_start_token_pos + num_patches + 1] != im_end_token:
282
+ raise ValueError("The image end token should follow the image start token.")
283
+
284
+ cur_input_embeds = torch.cat(
285
+ (
286
+ cur_input_embeds[:image_start_token_pos+1],
287
+ per_cur_image_features,
288
+ cur_input_embeds[image_start_token_pos + num_patches + 1:]
289
+ ),
290
+ dim=0
291
+ )
292
+
293
+
294
+ new_input_embeds.append(cur_input_embeds)
295
+ else:
296
+ raise NotImplementedError
297
+
298
+ inputs_embeds = torch.stack(new_input_embeds, dim=0)
299
+
300
+ return super(GOTQwenModel, self).forward(
301
+ input_ids=None, attention_mask=attention_mask, past_key_values=past_key_values,
302
+ inputs_embeds=inputs_embeds, use_cache=use_cache, position_ids = position_ids,
303
+ output_attentions=output_attentions, output_hidden_states=output_hidden_states,
304
+ return_dict=return_dict
305
+ )
306
+
307
+
308
+
309
+ class GOTQwenForCausalLM(Qwen2ForCausalLM):
310
+ config_class = GOTConfig
311
+ # supports_gradient_checkpointing = True
312
+
313
+ def __init__(self, config):
314
+ super(Qwen2ForCausalLM, self).__init__(config)
315
+ self.model = GOTQwenModel(config)
316
+
317
+ self.vocab_size = config.vocab_size
318
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
319
+
320
+ # Initialize weights and apply final processing
321
+ self.post_init()
322
+
323
+ def get_model(self):
324
+ return self.model
325
+
326
+ def forward(
327
+ self,
328
+ input_ids: torch.LongTensor = None,
329
+ attention_mask: Optional[torch.Tensor] = None,
330
+ position_ids: Optional[torch.LongTensor] = None,
331
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
332
+ inputs_embeds: Optional[torch.FloatTensor] = None,
333
+ labels: Optional[torch.LongTensor] = None,
334
+ use_cache: Optional[bool] = None,
335
+ output_attentions: Optional[bool] = None,
336
+ output_hidden_states: Optional[bool] = None,
337
+ images: Optional[torch.FloatTensor] = None,
338
+ return_dict: Optional[bool] = None,
339
+
340
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
341
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
342
+ output_hidden_states = (
343
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
344
+ )
345
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
346
+
347
+ outputs = self.model(
348
+ input_ids=input_ids,
349
+ past_key_values=past_key_values,
350
+ attention_mask=attention_mask,
351
+ position_ids=position_ids,
352
+ inputs_embeds=inputs_embeds,
353
+ use_cache=use_cache,
354
+ output_attentions=output_attentions,
355
+ output_hidden_states=output_hidden_states,
356
+ images=images,
357
+ return_dict=return_dict
358
+
359
+ )
360
+
361
+ hidden_states = outputs[0]
362
+ logits = self.lm_head(hidden_states)
363
+ logits = logits.float()
364
+
365
+ # logits
366
+
367
+ loss = None
368
+ if labels is not None:
369
+ # Shift so that tokens < n predict n
370
+ shift_logits = logits[..., :-1, :].contiguous()
371
+ shift_labels = labels[..., 1:].contiguous()
372
+ # Flatten the tokens
373
+ loss_fct = CrossEntropyLoss()
374
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
375
+ shift_labels = shift_labels.view(-1)
376
+ # Enable model parallelism
377
+ shift_labels = shift_labels.to(shift_logits.device)
378
+ loss = loss_fct(shift_logits, shift_labels)
379
+
380
+ if not return_dict:
381
+ output = (logits,) + outputs[1:]
382
+ return (loss,) + output if loss is not None else output
383
+
384
+ return CausalLMOutputWithPast(
385
+ loss=loss,
386
+ logits=logits,
387
+ past_key_values=outputs.past_key_values,
388
+ hidden_states=outputs.hidden_states,
389
+ attentions=outputs.attentions,
390
+ )
391
+
392
+
393
+ def prepare_inputs_for_generation(
394
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
395
+ ):
396
+ # Omit tokens covered by past_key_values
397
+ if past_key_values is not None:
398
+ if isinstance(past_key_values, Cache):
399
+ cache_length = past_key_values.get_seq_length()
400
+ past_length = past_key_values.seen_tokens
401
+ max_cache_length = past_key_values.get_max_length()
402
+ else:
403
+ cache_length = past_length = past_key_values[0][0].shape[2]
404
+ max_cache_length = None
405
+
406
+ # Keep only the unprocessed tokens:
407
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
408
+ # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
409
+ # input)
410
+ if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
411
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
412
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
413
+ # input_ids based on the past_length.
414
+ elif past_length < input_ids.shape[1]:
415
+ input_ids = input_ids[:, past_length:]
416
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
417
+
418
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
419
+ if (
420
+ max_cache_length is not None
421
+ and attention_mask is not None
422
+ and cache_length + input_ids.shape[1] > max_cache_length
423
+ ):
424
+ attention_mask = attention_mask[:, -max_cache_length:]
425
+
426
+ position_ids = kwargs.get("position_ids", None)
427
+ if attention_mask is not None and position_ids is None:
428
+ # create position_ids on the fly for batch generation
429
+ position_ids = attention_mask.long().cumsum(-1) - 1
430
+ position_ids.masked_fill_(attention_mask == 0, 1)
431
+ if past_key_values:
432
+ position_ids = position_ids[:, -input_ids.shape[1] :]
433
+
434
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
435
+ if inputs_embeds is not None and past_key_values is None:
436
+ model_inputs = {"inputs_embeds": inputs_embeds}
437
+ else:
438
+ model_inputs = {"input_ids": input_ids}
439
+
440
+ model_inputs.update(
441
+ {
442
+ "position_ids": position_ids,
443
+ "past_key_values": past_key_values,
444
+ "use_cache": kwargs.get("use_cache"),
445
+ "attention_mask": attention_mask,
446
+ "images": kwargs.get("images", None),
447
+ }
448
+ )
449
+ return model_inputs
450
+
451
+ def initialize_vision_tokenizer(
452
+ self,
453
+ tokenizer,
454
+ freeze_lm_model=False,
455
+ pretrained_stage1_model=None,
456
+ device="cpu"
457
+ ):
458
+ config = self.get_model().config
459
+
460
+
461
+ self.resize_token_embeddings(len(tokenizer))
462
+
463
+ config.im_patch_token = 151859
464
+
465
+ config.use_im_start_end = True
466
+
467
+ if config.use_im_start_end:
468
+ self.resize_token_embeddings(len(tokenizer))
469
+ config.im_start_token, config.im_end_token = 151857, 151858
470
+
471
+ def load_image(self, image_file):
472
+ if image_file.startswith('http') or image_file.startswith('https'):
473
+ response = requests.get(image_file)
474
+ image = Image.open(BytesIO(response.content)).convert('RGB')
475
+ else:
476
+ image = Image.open(image_file).convert('RGB')
477
+ return image
478
+
479
+ def disable_torch_init(self):
480
+ """
481
+ Disable the redundant torch default initialization to accelerate model creation.
482
+ """
483
+ import torch
484
+ setattr(torch.nn.Linear, "reset_parameters", lambda self: None)
485
+ setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None)
486
+
487
+ def chat(self, tokenizer, image_file, ocr_type, ocr_box='', ocr_color='', render=False, save_render_file=None, print_prompt=False, gradio_input=False, stream_flag = False):
488
+
489
+ self.disable_torch_init()
490
+
491
+
492
+ image_processor_high = GOTImageEvalProcessor(image_size=1024)
493
+
494
+ use_im_start_end = True
495
+
496
+ image_token_len = 256
497
+
498
+ if gradio_input:
499
+ image = image_file.copy()
500
+ else:
501
+ image = self.load_image(image_file)
502
+
503
+ w, h = image.size
504
+
505
+ if ocr_type == 'format':
506
+ qs = 'OCR with format: '
507
+ else:
508
+ qs = 'OCR: '
509
+
510
+ if ocr_box:
511
+ bbox = eval(ocr_box)
512
+ if len(bbox) == 2:
513
+ bbox[0] = int(bbox[0]/w*1000)
514
+ bbox[1] = int(bbox[1]/h*1000)
515
+ if len(bbox) == 4:
516
+ bbox[0] = int(bbox[0]/w*1000)
517
+ bbox[1] = int(bbox[1]/h*1000)
518
+ bbox[2] = int(bbox[2]/w*1000)
519
+ bbox[3] = int(bbox[3]/h*1000)
520
+ if ocr_type == 'format':
521
+ qs = str(bbox) + ' ' + 'OCR with format: '
522
+ else:
523
+ qs = str(bbox) + ' ' + 'OCR: '
524
+
525
+ if ocr_color:
526
+ if ocr_type == 'format':
527
+ qs = '[' + ocr_color + ']' + ' ' + 'OCR with format: '
528
+ else:
529
+ qs = '[' + ocr_color + ']' + ' ' + 'OCR: '
530
+
531
+ if use_im_start_end:
532
+ qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_PATCH_TOKEN*image_token_len + DEFAULT_IM_END_TOKEN + '\n' + qs
533
+ else:
534
+ qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
535
+
536
+
537
+ conv_mpt = Conversation(
538
+ system="""<|im_start|>system
539
+ You should follow the instructions carefully and explain your answers in detail.""",
540
+ # system = None,
541
+ roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
542
+ version="mpt",
543
+ messages=(),
544
+ offset=0,
545
+ sep_style=SeparatorStyle.MPT,
546
+ sep="<|im_end|>",
547
+ )
548
+
549
+ conv = conv_mpt.copy()
550
+ conv.append_message(conv.roles[0], qs)
551
+ conv.append_message(conv.roles[1], None)
552
+ prompt = conv.get_prompt()
553
+
554
+ if print_prompt:
555
+ print(prompt)
556
+
557
+ inputs = tokenizer([prompt])
558
+
559
+ image_tensor_1 = image_processor_high(image)
560
+
561
+ input_ids = torch.as_tensor(inputs.input_ids).cpu()
562
+
563
+ stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
564
+ keywords = [stop_str]
565
+ stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
566
+ streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
567
+
568
+ if stream_flag:
569
+ with torch.autocast("cpu", dtype=torch.bfloat16):
570
+ output_ids = self.generate(
571
+ input_ids,
572
+ images=[image_tensor_1.unsqueeze(0).half().cpu()],
573
+ do_sample=False,
574
+ num_beams = 1,
575
+ no_repeat_ngram_size = 20,
576
+ streamer=streamer,
577
+ max_new_tokens=4096,
578
+ stopping_criteria=[stopping_criteria]
579
+ )
580
+ else:
581
+ with torch.autocast("cpu", dtype=torch.bfloat16):
582
+ output_ids = self.generate(
583
+ input_ids,
584
+ images=[image_tensor_1.unsqueeze(0).half().cpu()],
585
+ do_sample=False,
586
+ num_beams = 1,
587
+ no_repeat_ngram_size = 20,
588
+ # streamer=streamer,
589
+ max_new_tokens=4096,
590
+ stopping_criteria=[stopping_criteria]
591
+ )
592
+
593
+ outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip()
594
+
595
+ if outputs.endswith(stop_str):
596
+ outputs = outputs[:-len(stop_str)]
597
+ outputs = outputs.strip()
598
+ response_str = outputs
599
+
600
+ if render:
601
+ print('==============rendering===============')
602
+ from .render_tools import svg_to_html, content_mmd_to_html, tik_html, translation_table
603
+
604
+ if '**kern' in outputs:
605
+ import verovio
606
+ tk = verovio.toolkit()
607
+ tk.loadData(outputs)
608
+ tk.setOptions({"pageWidth": 2100, "footer": 'none',
609
+ 'barLineWidth': 0.5, 'beamMaxSlope': 15,
610
+ 'staffLineWidth': 0.2, 'spacingStaff': 6})
611
+ tk.getPageCount()
612
+ svg = tk.renderToSVG()
613
+ svg = svg.replace("overflow=\"inherit\"", "overflow=\"visible\"")
614
+
615
+ svg_to_html(svg, save_render_file)
616
+
617
+ if ocr_type == 'format' and '**kern' not in outputs:
618
+
619
+
620
+ if '\\begin{tikzpicture}' not in outputs:
621
+ html_path_2 = save_render_file
622
+ right_num = outputs.count('\\right')
623
+ left_num = outputs.count('\left')
624
+
625
+ if right_num != left_num:
626
+ outputs = outputs.replace('\left(', '(').replace('\\right)', ')').replace('\left[', '[').replace('\\right]', ']').replace('\left{', '{').replace('\\right}', '}').replace('\left|', '|').replace('\\right|', '|').replace('\left.', '.').replace('\\right.', '.')
627
+
628
+
629
+ outputs = outputs.replace('"', '``').replace('$', '')
630
+
631
+ outputs_list = outputs.split('\n')
632
+ gt= ''
633
+ for out in outputs_list:
634
+ gt += '"' + out.replace('\\', '\\\\') + r'\n' + '"' + '+' + '\n'
635
+
636
+ gt = gt[:-2]
637
+
638
+
639
+ lines = content_mmd_to_html
640
+ lines = lines.split("const text =")
641
+ new_web = lines[0] + 'const text =' + gt + lines[1]
642
+
643
+ else:
644
+ html_path_2 = save_render_file
645
+ outputs = outputs.translate(translation_table)
646
+ outputs_list = outputs.split('\n')
647
+ gt= ''
648
+ for out in outputs_list:
649
+ if out:
650
+ if '\\begin{tikzpicture}' not in out and '\\end{tikzpicture}' not in out:
651
+ while out[-1] == ' ':
652
+ out = out[:-1]
653
+ if out is None:
654
+ break
655
+
656
+ if out:
657
+ if out[-1] != ';':
658
+ gt += out[:-1] + ';\n'
659
+ else:
660
+ gt += out + '\n'
661
+ else:
662
+ gt += out + '\n'
663
+
664
+
665
+ lines = tik_html
666
+ lines = lines.split("const text =")
667
+ new_web = lines[0] + gt + lines[1]
668
+
669
+ with open(html_path_2, 'w') as web_f_new:
670
+ web_f_new.write(new_web)
671
+ return response_str
672
+
673
+ def dynamic_preprocess(self, image, min_num=1, max_num=6, image_size=1024, use_thumbnail=True):
674
+
675
+ def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
676
+ best_ratio_diff = float('inf')
677
+ best_ratio = (1, 1)
678
+ area = width * height
679
+ for ratio in target_ratios:
680
+ target_aspect_ratio = ratio[0] / ratio[1]
681
+ ratio_diff = abs(aspect_ratio - target_aspect_ratio)
682
+ if ratio_diff < best_ratio_diff:
683
+ best_ratio_diff = ratio_diff
684
+ best_ratio = ratio
685
+ elif ratio_diff == best_ratio_diff:
686
+ if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
687
+ best_ratio = ratio
688
+ # print(f'width: {width}, height: {height}, best_ratio: {best_ratio}')
689
+ return best_ratio
690
+
691
+ orig_width, orig_height = image.size
692
+ aspect_ratio = orig_width / orig_height
693
+
694
+ # calculate the existing image aspect ratio
695
+ target_ratios = set(
696
+ (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
697
+ i * j <= max_num and i * j >= min_num)
698
+ # print(target_ratios)
699
+ target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
700
+
701
+ # find the closest aspect ratio to the target
702
+ target_aspect_ratio = find_closest_aspect_ratio(
703
+ aspect_ratio, target_ratios, orig_width, orig_height, image_size)
704
+
705
+ # print(target_aspect_ratio)
706
+ # calculate the target width and height
707
+ target_width = image_size * target_aspect_ratio[0]
708
+ target_height = image_size * target_aspect_ratio[1]
709
+ blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
710
+
711
+ # resize the image
712
+ resized_img = image.resize((target_width, target_height))
713
+ processed_images = []
714
+ for i in range(blocks):
715
+ box = (
716
+ (i % (target_width // image_size)) * image_size,
717
+ (i // (target_width // image_size)) * image_size,
718
+ ((i % (target_width // image_size)) + 1) * image_size,
719
+ ((i // (target_width // image_size)) + 1) * image_size
720
+ )
721
+ # split the image
722
+ split_img = resized_img.crop(box)
723
+ processed_images.append(split_img)
724
+ assert len(processed_images) == blocks
725
+ if use_thumbnail and len(processed_images) != 1:
726
+ thumbnail_img = image.resize((image_size, image_size))
727
+ processed_images.append(thumbnail_img)
728
+ return processed_images
729
+
730
+
731
+ def chat_crop(self, tokenizer, image_file, ocr_type, render=False, save_render_file=None, print_prompt=False, gradio_input=False, stream_flag = False):
732
+ # Model
733
+ self.disable_torch_init()
734
+ multi_page=False
735
+
736
+
737
+ image_processor_high = GOTImageEvalProcessor(image_size=1024)
738
+
739
+ use_im_start_end = True
740
+
741
+
742
+ image_token_len = 256
743
+
744
+ image_list = []
745
+
746
+ # if len(image_file_list)>1:
747
+ # multi_page = True
748
+
749
+ if multi_page:
750
+ qs = 'OCR with format across multi pages: '
751
+ # only for png files
752
+ # import glob
753
+ # from natsort import natsorted
754
+ # patches = glob.glob(image_file + '/*png')
755
+ patches = image_file
756
+ # patches = natsorted(patches)
757
+ sub_images = []
758
+ for sub_image in patches:
759
+ sub_images.append(self.load_image(sub_image))
760
+
761
+ ll = len(patches)
762
+ # print(patches)
763
+ # print("len ll: ", ll)
764
+
765
+ else:
766
+ if ocr_type == 'format':
767
+ qs = 'OCR with format upon the patch reference: '
768
+ else:
769
+ qs = 'OCR upon the patch reference: '
770
+ if gradio_input:
771
+ img = image_file.copy()
772
+ else:
773
+ img = self.load_image(image_file)
774
+ sub_images = self.dynamic_preprocess(img)
775
+ ll = len(sub_images)
776
+
777
+ for image in sub_images:
778
+ image_tensor_1 = image_processor_high(image)
779
+ image_list.append(image_tensor_1)
780
+
781
+
782
+ image_list = torch.stack(image_list)
783
+
784
+ print('====new images batch size======: \n',image_list.shape)
785
+
786
+
787
+ if use_im_start_end:
788
+ qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_PATCH_TOKEN*image_token_len*ll + DEFAULT_IM_END_TOKEN + '\n' + qs
789
+ else:
790
+ qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
791
+
792
+
793
+ conv_mpt = Conversation(
794
+ system="""<|im_start|>system
795
+ You should follow the instructions carefully and explain your answers in detail.""",
796
+ # system = None,
797
+ roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
798
+ version="mpt",
799
+ messages=(),
800
+ offset=0,
801
+ sep_style=SeparatorStyle.MPT,
802
+ sep="<|im_end|>",
803
+ )
804
+
805
+ conv = conv_mpt.copy()
806
+ conv.append_message(conv.roles[0], qs)
807
+ conv.append_message(conv.roles[1], None)
808
+ prompt = conv.get_prompt()
809
+
810
+ if print_prompt:
811
+ print(prompt)
812
+
813
+ inputs = tokenizer([prompt])
814
+
815
+ input_ids = torch.as_tensor(inputs.input_ids).cpu()
816
+
817
+ stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
818
+ keywords = [stop_str]
819
+ stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
820
+ streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
821
+
822
+ if stream_flag:
823
+ with torch.autocast("cpu", dtype=torch.bfloat16):
824
+ output_ids = self.generate(
825
+ input_ids,
826
+ images=[image_list.half().cpu()],
827
+ do_sample=False,
828
+ num_beams = 1,
829
+ # no_repeat_ngram_size = 20,
830
+ streamer=streamer,
831
+ max_new_tokens=4096,
832
+ stopping_criteria=[stopping_criteria]
833
+ )
834
+ else:
835
+ with torch.autocast("cpu", dtype=torch.bfloat16):
836
+ output_ids = self.generate(
837
+ input_ids,
838
+ images=[image_list.half().cpu()],
839
+ do_sample=False,
840
+ num_beams = 1,
841
+ # no_repeat_ngram_size = 20,
842
+ # streamer=streamer,
843
+ max_new_tokens=4096,
844
+ stopping_criteria=[stopping_criteria]
845
+ )
846
+
847
+ outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip()
848
+
849
+ if outputs.endswith(stop_str):
850
+ outputs = outputs[:-len(stop_str)]
851
+ outputs = outputs.strip()
852
+ response_str = outputs
853
+
854
+ if render:
855
+ print('==============rendering===============')
856
+ from .render_tools import content_mmd_to_html
857
+ html_path_2 = save_render_file
858
+ right_num = outputs.count('\\right')
859
+ left_num = outputs.count('\left')
860
+
861
+ if right_num != left_num:
862
+ outputs = outputs.replace('\left(', '(').replace('\\right)', ')').replace('\left[', '[').replace('\\right]', ']').replace('\left{', '{').replace('\\right}', '}').replace('\left|', '|').replace('\\right|', '|').replace('\left.', '.').replace('\\right.', '.')
863
+
864
+
865
+ outputs = outputs.replace('"', '``').replace('$', '')
866
+
867
+ outputs_list = outputs.split('\n')
868
+ gt= ''
869
+ for out in outputs_list:
870
+ gt += '"' + out.replace('\\', '\\\\') + r'\n' + '"' + '+' + '\n'
871
+
872
+ gt = gt[:-2]
873
+
874
+ lines = content_mmd_to_html
875
+ lines = lines.split("const text =")
876
+ new_web = lines[0] + 'const text =' + gt + lines[1]
877
+
878
+ with open(html_path_2, 'w') as web_f_new:
879
+ web_f_new.write(new_web)
880
+
881
+ return response_str