File size: 2,184 Bytes
0137716
 
 
 
 
 
 
 
 
 
 
 
 
 
dd79356
0137716
aefca9c
 
 
dd79356
0137716
 
 
dd79356
0137716
 
 
dd79356
 
 
0137716
 
 
dd79356
0137716
 
 
dd79356
0137716
 
 
 
 
 
 
 
 
 
 
aefca9c
 
0137716
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: srimoyee12/my_awesome_model
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# srimoyee12/my_awesome_model

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the [Auditor Review Dataset](https://huggingface.co/datasets/demo-org/auditor_review).
It achieves the following results on the evaluation set:
- Train Loss: 0.1735
- Validation Loss: 0.3834
- Train Accuracy: 0.8524
- Epoch: 3

## Model description

This is a simple classifier model based on DistilBERT. It classifies given data into Negative, Neutral or Positive based on the sentiment.

## Intended uses & limitations

Can be used for text classification.

This is created for illustration purposes and might not have the highest accuracy.

## Training and evaluation data

Default split from the [dataset card](https://huggingface.co/datasets/demo-org/auditor_review)

## Training procedure


### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1210, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32

### Training results

| Train Loss | Validation Loss | Train Accuracy | Epoch |
|:----------:|:---------------:|:--------------:|:-----:|
| 0.5919     | 0.4004          | 0.8359         | 0     |
| 0.2881     | 0.3590          | 0.8473         | 1     |
| 0.1735     | 0.3834          | 0.8524         | 2     |


### Framework versions

- Transformers 4.27.3
- TensorFlow 2.11.0
- Datasets 2.10.1
- Tokenizers 0.13.2