ssmits commited on
Commit
6391d9b
1 Parent(s): c5c8d4d

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +105 -0
README.md ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ license_name: qwen
4
+ license_link: https://huggingface.co/Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE
5
+ language:
6
+ - en
7
+ pipeline_tag: text-generation
8
+ base_model:
9
+ - ssmits/Qwen2.5-122B-Instruct
10
+ tags:
11
+ - chat
12
+ ---
13
+
14
+ # Qwen-122B
15
+
16
+ Qwen-122B is a [Qwen/Qwen-72B](https://huggingface.co/Qwen/Qwen-72B) self-merge made with [MergeKit](https://github.com/arcee-ai/mergekit/tree/main).
17
+
18
+ It was inspired by large merges like:
19
+
20
+ - [alpindale/goliath-120b](https://huggingface.co/alpindale/goliath-120b)
21
+ - [nsfwthrowitaway69/Venus-120b-v1.0](https://huggingface.co/nsfwthrowitaway69/Venus-120b-v1.0)
22
+ - [cognitivecomputations/MegaDolphin-120b](https://huggingface.co/cognitivecomputations/MegaDolphin-120b)
23
+ - [wolfram/miquliz-120b-v2.0](https://huggingface.co/wolfram/miquliz-120b-v2.0)
24
+ - [mlabonne/Meta-Llama-3-120B-Instruct](https://huggingface.co/mlabonne/Meta-Llama-3-120B-Instruct)
25
+
26
+ Special thanks to [Eric Hartford](https://huggingface.co/ehartford) for both inspiring and evaluating the original model, to [Charles Goddard](https://huggingface.co/chargoddard) for creating MergeKit, and to [Mathieu Labonne](https://huggingface.co/mlabonne) for creating the Meta-Llama-3-120B-Instruct model that served as the main inspiration for this merge.
27
+
28
+ ## 🔍 Applications
29
+
30
+ This model is recommended for creative writing tasks. It uses the Qwen chat template with a default context window of 8K (can be extended with rope theta).
31
+
32
+ The model is generally quite creative and has a good writing style. It may occasionally output typos and show a preference for uppercase text.
33
+
34
+ ## ⚡ Quantized models
35
+
36
+ Thanks to [Bartowski](https://huggingface.co/ehartford), [elinas](https://huggingface.co/elinas), the [mlx-community](https://huggingface.co/mlx-community) and others for providing these models.
37
+
38
+ * **GGUF**: [Link to GGUF model]
39
+ * **EXL2**: [Link to EXL2 model]
40
+ * **mlx**: [Link to mlx model]
41
+
42
+ ## 🏆 Evaluation
43
+ This model has yet to be thoroughly evaluated. It is expected to excel in creative writing but may have limitations in other tasks. Use it with caution and don't expect it to outperform state-of-the-art models outside of specific creative use cases.
44
+
45
+ Once the model is created and tested, this section will be updated with:
46
+
47
+ * Links to evaluation threads on social media platforms
48
+ * Examples of the model's performance in creative writing tasks
49
+ * Comparisons with other large language models in various applications
50
+ * Community feedback and use cases
51
+
52
+ We encourage users to share their experiences and evaluations to help build a comprehensive understanding of the model's capabilities and limitations.
53
+
54
+ ## 🧩 Configuration
55
+
56
+ ```yaml
57
+ slices:
58
+ - sources:
59
+ - layer_range: [0, 20]
60
+ model: Qwen/Qwen-72B
61
+ - sources:
62
+ - layer_range: [10, 30]
63
+ model: Qwen/Qwen-72B
64
+ - sources:
65
+ - layer_range: [20, 40]
66
+ model: Qwen/Qwen-72B
67
+ - sources:
68
+ - layer_range: [30, 50]
69
+ model: Qwen/Qwen-72B
70
+ - sources:
71
+ - layer_range: [40, 60]
72
+ model: Qwen/Qwen-72B
73
+ - sources:
74
+ - layer_range: [50, 70]
75
+ model: Qwen/Qwen-72B
76
+ - sources:
77
+ - layer_range: [60, 80]
78
+ model: Qwen/Qwen-72B
79
+ merge_method: passthrough
80
+ dtype: bfloat16
81
+ ```
82
+
83
+ ## 💻 Usage
84
+
85
+ ```python
86
+ !pip install -qU transformers accelerate
87
+
88
+ from transformers import AutoTokenizer
89
+ import transformers
90
+ import torch
91
+
92
+ model = "path/to/Qwen-122B"
93
+ messages = [{"role": "user", "content": "What is a large language model?"}]
94
+
95
+ tokenizer = AutoTokenizer.from_pretrained(model)
96
+ prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
97
+ pipeline = transformers.pipeline(
98
+ "text-generation",
99
+ model=model,
100
+ torch_dtype=torch.float16,
101
+ device_map="auto",
102
+ )
103
+
104
+ outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
105
+ print(outputs[0]["generated_text"])