File size: 26,653 Bytes
1f33c40 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
2024-03-26 11:28:53,846 ----------------------------------------------------------------------------------------------------
2024-03-26 11:28:53,847 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(30001, 768)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
(0-11): 12 x BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): BertPooler(
(dense): Linear(in_features=768, out_features=768, bias=True)
(activation): Tanh()
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=768, out_features=17, bias=True)
(loss_function): CrossEntropyLoss()
)"
2024-03-26 11:28:53,847 ----------------------------------------------------------------------------------------------------
2024-03-26 11:28:53,847 Corpus: 758 train + 94 dev + 96 test sentences
2024-03-26 11:28:53,847 ----------------------------------------------------------------------------------------------------
2024-03-26 11:28:53,847 Train: 758 sentences
2024-03-26 11:28:53,847 (train_with_dev=False, train_with_test=False)
2024-03-26 11:28:53,847 ----------------------------------------------------------------------------------------------------
2024-03-26 11:28:53,847 Training Params:
2024-03-26 11:28:53,847 - learning_rate: "3e-05"
2024-03-26 11:28:53,847 - mini_batch_size: "16"
2024-03-26 11:28:53,847 - max_epochs: "10"
2024-03-26 11:28:53,847 - shuffle: "True"
2024-03-26 11:28:53,847 ----------------------------------------------------------------------------------------------------
2024-03-26 11:28:53,847 Plugins:
2024-03-26 11:28:53,847 - TensorboardLogger
2024-03-26 11:28:53,847 - LinearScheduler | warmup_fraction: '0.1'
2024-03-26 11:28:53,847 ----------------------------------------------------------------------------------------------------
2024-03-26 11:28:53,847 Final evaluation on model from best epoch (best-model.pt)
2024-03-26 11:28:53,847 - metric: "('micro avg', 'f1-score')"
2024-03-26 11:28:53,847 ----------------------------------------------------------------------------------------------------
2024-03-26 11:28:53,847 Computation:
2024-03-26 11:28:53,847 - compute on device: cuda:0
2024-03-26 11:28:53,847 - embedding storage: none
2024-03-26 11:28:53,847 ----------------------------------------------------------------------------------------------------
2024-03-26 11:28:53,847 Model training base path: "flair-co-funer-german_bert_base-bs16-e10-lr3e-05-3"
2024-03-26 11:28:53,847 ----------------------------------------------------------------------------------------------------
2024-03-26 11:28:53,847 ----------------------------------------------------------------------------------------------------
2024-03-26 11:28:53,847 Logging anything other than scalars to TensorBoard is currently not supported.
2024-03-26 11:28:55,168 epoch 1 - iter 4/48 - loss 3.07964766 - time (sec): 1.32 - samples/sec: 2084.33 - lr: 0.000002 - momentum: 0.000000
2024-03-26 11:28:57,277 epoch 1 - iter 8/48 - loss 3.11459541 - time (sec): 3.43 - samples/sec: 1698.14 - lr: 0.000004 - momentum: 0.000000
2024-03-26 11:28:58,788 epoch 1 - iter 12/48 - loss 3.01247506 - time (sec): 4.94 - samples/sec: 1694.91 - lr: 0.000007 - momentum: 0.000000
2024-03-26 11:29:01,798 epoch 1 - iter 16/48 - loss 2.90095188 - time (sec): 7.95 - samples/sec: 1458.76 - lr: 0.000009 - momentum: 0.000000
2024-03-26 11:29:03,518 epoch 1 - iter 20/48 - loss 2.77027282 - time (sec): 9.67 - samples/sec: 1489.31 - lr: 0.000012 - momentum: 0.000000
2024-03-26 11:29:04,982 epoch 1 - iter 24/48 - loss 2.67348040 - time (sec): 11.13 - samples/sec: 1541.94 - lr: 0.000014 - momentum: 0.000000
2024-03-26 11:29:06,354 epoch 1 - iter 28/48 - loss 2.56554049 - time (sec): 12.51 - samples/sec: 1561.39 - lr: 0.000017 - momentum: 0.000000
2024-03-26 11:29:08,476 epoch 1 - iter 32/48 - loss 2.46046261 - time (sec): 14.63 - samples/sec: 1553.68 - lr: 0.000019 - momentum: 0.000000
2024-03-26 11:29:10,048 epoch 1 - iter 36/48 - loss 2.36040139 - time (sec): 16.20 - samples/sec: 1575.19 - lr: 0.000022 - momentum: 0.000000
2024-03-26 11:29:12,298 epoch 1 - iter 40/48 - loss 2.25501999 - time (sec): 18.45 - samples/sec: 1570.45 - lr: 0.000024 - momentum: 0.000000
2024-03-26 11:29:14,214 epoch 1 - iter 44/48 - loss 2.15905715 - time (sec): 20.37 - samples/sec: 1574.46 - lr: 0.000027 - momentum: 0.000000
2024-03-26 11:29:15,874 epoch 1 - iter 48/48 - loss 2.07940884 - time (sec): 22.03 - samples/sec: 1565.04 - lr: 0.000029 - momentum: 0.000000
2024-03-26 11:29:15,874 ----------------------------------------------------------------------------------------------------
2024-03-26 11:29:15,874 EPOCH 1 done: loss 2.0794 - lr: 0.000029
2024-03-26 11:29:16,722 DEV : loss 0.8170562386512756 - f1-score (micro avg) 0.4639
2024-03-26 11:29:16,723 saving best model
2024-03-26 11:29:16,986 ----------------------------------------------------------------------------------------------------
2024-03-26 11:29:18,437 epoch 2 - iter 4/48 - loss 1.02754611 - time (sec): 1.45 - samples/sec: 1720.69 - lr: 0.000030 - momentum: 0.000000
2024-03-26 11:29:19,922 epoch 2 - iter 8/48 - loss 0.84369377 - time (sec): 2.93 - samples/sec: 1663.09 - lr: 0.000030 - momentum: 0.000000
2024-03-26 11:29:21,389 epoch 2 - iter 12/48 - loss 0.81565184 - time (sec): 4.40 - samples/sec: 1746.21 - lr: 0.000029 - momentum: 0.000000
2024-03-26 11:29:23,337 epoch 2 - iter 16/48 - loss 0.74966979 - time (sec): 6.35 - samples/sec: 1694.05 - lr: 0.000029 - momentum: 0.000000
2024-03-26 11:29:25,667 epoch 2 - iter 20/48 - loss 0.71542244 - time (sec): 8.68 - samples/sec: 1633.66 - lr: 0.000029 - momentum: 0.000000
2024-03-26 11:29:27,750 epoch 2 - iter 24/48 - loss 0.67118474 - time (sec): 10.76 - samples/sec: 1611.61 - lr: 0.000028 - momentum: 0.000000
2024-03-26 11:29:30,603 epoch 2 - iter 28/48 - loss 0.64754457 - time (sec): 13.62 - samples/sec: 1536.84 - lr: 0.000028 - momentum: 0.000000
2024-03-26 11:29:32,828 epoch 2 - iter 32/48 - loss 0.62155564 - time (sec): 15.84 - samples/sec: 1506.72 - lr: 0.000028 - momentum: 0.000000
2024-03-26 11:29:34,583 epoch 2 - iter 36/48 - loss 0.60558902 - time (sec): 17.60 - samples/sec: 1501.29 - lr: 0.000028 - momentum: 0.000000
2024-03-26 11:29:36,341 epoch 2 - iter 40/48 - loss 0.59758423 - time (sec): 19.35 - samples/sec: 1507.28 - lr: 0.000027 - momentum: 0.000000
2024-03-26 11:29:38,656 epoch 2 - iter 44/48 - loss 0.57874089 - time (sec): 21.67 - samples/sec: 1495.35 - lr: 0.000027 - momentum: 0.000000
2024-03-26 11:29:40,218 epoch 2 - iter 48/48 - loss 0.56587701 - time (sec): 23.23 - samples/sec: 1483.88 - lr: 0.000027 - momentum: 0.000000
2024-03-26 11:29:40,218 ----------------------------------------------------------------------------------------------------
2024-03-26 11:29:40,218 EPOCH 2 done: loss 0.5659 - lr: 0.000027
2024-03-26 11:29:41,146 DEV : loss 0.3203175961971283 - f1-score (micro avg) 0.767
2024-03-26 11:29:41,147 saving best model
2024-03-26 11:29:41,560 ----------------------------------------------------------------------------------------------------
2024-03-26 11:29:43,209 epoch 3 - iter 4/48 - loss 0.37148736 - time (sec): 1.65 - samples/sec: 1486.34 - lr: 0.000026 - momentum: 0.000000
2024-03-26 11:29:46,032 epoch 3 - iter 8/48 - loss 0.31752787 - time (sec): 4.47 - samples/sec: 1281.51 - lr: 0.000026 - momentum: 0.000000
2024-03-26 11:29:47,322 epoch 3 - iter 12/48 - loss 0.31729253 - time (sec): 5.76 - samples/sec: 1414.04 - lr: 0.000026 - momentum: 0.000000
2024-03-26 11:29:48,736 epoch 3 - iter 16/48 - loss 0.29219495 - time (sec): 7.18 - samples/sec: 1538.33 - lr: 0.000026 - momentum: 0.000000
2024-03-26 11:29:50,239 epoch 3 - iter 20/48 - loss 0.29329130 - time (sec): 8.68 - samples/sec: 1557.00 - lr: 0.000025 - momentum: 0.000000
2024-03-26 11:29:53,048 epoch 3 - iter 24/48 - loss 0.28339544 - time (sec): 11.49 - samples/sec: 1454.15 - lr: 0.000025 - momentum: 0.000000
2024-03-26 11:29:55,047 epoch 3 - iter 28/48 - loss 0.28604906 - time (sec): 13.49 - samples/sec: 1469.63 - lr: 0.000025 - momentum: 0.000000
2024-03-26 11:29:57,569 epoch 3 - iter 32/48 - loss 0.27422515 - time (sec): 16.01 - samples/sec: 1424.34 - lr: 0.000025 - momentum: 0.000000
2024-03-26 11:29:59,547 epoch 3 - iter 36/48 - loss 0.27654979 - time (sec): 17.99 - samples/sec: 1422.10 - lr: 0.000024 - momentum: 0.000000
2024-03-26 11:30:01,932 epoch 3 - iter 40/48 - loss 0.26611635 - time (sec): 20.37 - samples/sec: 1402.18 - lr: 0.000024 - momentum: 0.000000
2024-03-26 11:30:04,421 epoch 3 - iter 44/48 - loss 0.27617654 - time (sec): 22.86 - samples/sec: 1392.02 - lr: 0.000024 - momentum: 0.000000
2024-03-26 11:30:06,866 epoch 3 - iter 48/48 - loss 0.26829778 - time (sec): 25.30 - samples/sec: 1362.29 - lr: 0.000023 - momentum: 0.000000
2024-03-26 11:30:06,866 ----------------------------------------------------------------------------------------------------
2024-03-26 11:30:06,866 EPOCH 3 done: loss 0.2683 - lr: 0.000023
2024-03-26 11:30:07,798 DEV : loss 0.2340826541185379 - f1-score (micro avg) 0.841
2024-03-26 11:30:07,799 saving best model
2024-03-26 11:30:08,237 ----------------------------------------------------------------------------------------------------
2024-03-26 11:30:09,655 epoch 4 - iter 4/48 - loss 0.21797697 - time (sec): 1.42 - samples/sec: 1769.28 - lr: 0.000023 - momentum: 0.000000
2024-03-26 11:30:11,585 epoch 4 - iter 8/48 - loss 0.20290756 - time (sec): 3.35 - samples/sec: 1601.65 - lr: 0.000023 - momentum: 0.000000
2024-03-26 11:30:14,300 epoch 4 - iter 12/48 - loss 0.19289447 - time (sec): 6.06 - samples/sec: 1392.35 - lr: 0.000023 - momentum: 0.000000
2024-03-26 11:30:16,254 epoch 4 - iter 16/48 - loss 0.19394381 - time (sec): 8.01 - samples/sec: 1412.90 - lr: 0.000022 - momentum: 0.000000
2024-03-26 11:30:18,739 epoch 4 - iter 20/48 - loss 0.18292450 - time (sec): 10.50 - samples/sec: 1399.42 - lr: 0.000022 - momentum: 0.000000
2024-03-26 11:30:21,660 epoch 4 - iter 24/48 - loss 0.17189080 - time (sec): 13.42 - samples/sec: 1358.68 - lr: 0.000022 - momentum: 0.000000
2024-03-26 11:30:22,837 epoch 4 - iter 28/48 - loss 0.16802568 - time (sec): 14.60 - samples/sec: 1391.56 - lr: 0.000022 - momentum: 0.000000
2024-03-26 11:30:25,937 epoch 4 - iter 32/48 - loss 0.16476876 - time (sec): 17.70 - samples/sec: 1334.53 - lr: 0.000021 - momentum: 0.000000
2024-03-26 11:30:27,713 epoch 4 - iter 36/48 - loss 0.16884874 - time (sec): 19.47 - samples/sec: 1366.23 - lr: 0.000021 - momentum: 0.000000
2024-03-26 11:30:30,604 epoch 4 - iter 40/48 - loss 0.17341879 - time (sec): 22.36 - samples/sec: 1336.25 - lr: 0.000021 - momentum: 0.000000
2024-03-26 11:30:31,516 epoch 4 - iter 44/48 - loss 0.17612870 - time (sec): 23.28 - samples/sec: 1382.42 - lr: 0.000020 - momentum: 0.000000
2024-03-26 11:30:33,007 epoch 4 - iter 48/48 - loss 0.17762477 - time (sec): 24.77 - samples/sec: 1391.84 - lr: 0.000020 - momentum: 0.000000
2024-03-26 11:30:33,007 ----------------------------------------------------------------------------------------------------
2024-03-26 11:30:33,007 EPOCH 4 done: loss 0.1776 - lr: 0.000020
2024-03-26 11:30:33,938 DEV : loss 0.21595697104930878 - f1-score (micro avg) 0.8703
2024-03-26 11:30:33,939 saving best model
2024-03-26 11:30:34,355 ----------------------------------------------------------------------------------------------------
2024-03-26 11:30:36,824 epoch 5 - iter 4/48 - loss 0.10128394 - time (sec): 2.47 - samples/sec: 1288.85 - lr: 0.000020 - momentum: 0.000000
2024-03-26 11:30:38,283 epoch 5 - iter 8/48 - loss 0.12636567 - time (sec): 3.92 - samples/sec: 1450.48 - lr: 0.000020 - momentum: 0.000000
2024-03-26 11:30:39,795 epoch 5 - iter 12/48 - loss 0.12705709 - time (sec): 5.44 - samples/sec: 1515.78 - lr: 0.000019 - momentum: 0.000000
2024-03-26 11:30:42,025 epoch 5 - iter 16/48 - loss 0.12982090 - time (sec): 7.67 - samples/sec: 1435.07 - lr: 0.000019 - momentum: 0.000000
2024-03-26 11:30:44,163 epoch 5 - iter 20/48 - loss 0.14095353 - time (sec): 9.81 - samples/sec: 1436.03 - lr: 0.000019 - momentum: 0.000000
2024-03-26 11:30:46,773 epoch 5 - iter 24/48 - loss 0.13087999 - time (sec): 12.42 - samples/sec: 1417.95 - lr: 0.000018 - momentum: 0.000000
2024-03-26 11:30:49,376 epoch 5 - iter 28/48 - loss 0.12372680 - time (sec): 15.02 - samples/sec: 1401.54 - lr: 0.000018 - momentum: 0.000000
2024-03-26 11:30:51,372 epoch 5 - iter 32/48 - loss 0.12363549 - time (sec): 17.01 - samples/sec: 1399.62 - lr: 0.000018 - momentum: 0.000000
2024-03-26 11:30:53,267 epoch 5 - iter 36/48 - loss 0.12028316 - time (sec): 18.91 - samples/sec: 1398.55 - lr: 0.000018 - momentum: 0.000000
2024-03-26 11:30:55,711 epoch 5 - iter 40/48 - loss 0.12087516 - time (sec): 21.35 - samples/sec: 1383.09 - lr: 0.000017 - momentum: 0.000000
2024-03-26 11:30:57,735 epoch 5 - iter 44/48 - loss 0.12372093 - time (sec): 23.38 - samples/sec: 1381.72 - lr: 0.000017 - momentum: 0.000000
2024-03-26 11:30:58,831 epoch 5 - iter 48/48 - loss 0.12208489 - time (sec): 24.47 - samples/sec: 1408.53 - lr: 0.000017 - momentum: 0.000000
2024-03-26 11:30:58,832 ----------------------------------------------------------------------------------------------------
2024-03-26 11:30:58,832 EPOCH 5 done: loss 0.1221 - lr: 0.000017
2024-03-26 11:30:59,770 DEV : loss 0.1940278708934784 - f1-score (micro avg) 0.8874
2024-03-26 11:30:59,771 saving best model
2024-03-26 11:31:00,182 ----------------------------------------------------------------------------------------------------
2024-03-26 11:31:02,827 epoch 6 - iter 4/48 - loss 0.07889472 - time (sec): 2.64 - samples/sec: 1202.24 - lr: 0.000017 - momentum: 0.000000
2024-03-26 11:31:04,838 epoch 6 - iter 8/48 - loss 0.08598492 - time (sec): 4.65 - samples/sec: 1261.32 - lr: 0.000016 - momentum: 0.000000
2024-03-26 11:31:06,425 epoch 6 - iter 12/48 - loss 0.09225964 - time (sec): 6.24 - samples/sec: 1413.33 - lr: 0.000016 - momentum: 0.000000
2024-03-26 11:31:08,439 epoch 6 - iter 16/48 - loss 0.08541448 - time (sec): 8.26 - samples/sec: 1408.53 - lr: 0.000016 - momentum: 0.000000
2024-03-26 11:31:09,557 epoch 6 - iter 20/48 - loss 0.08708355 - time (sec): 9.37 - samples/sec: 1490.55 - lr: 0.000015 - momentum: 0.000000
2024-03-26 11:31:11,470 epoch 6 - iter 24/48 - loss 0.08587520 - time (sec): 11.29 - samples/sec: 1480.88 - lr: 0.000015 - momentum: 0.000000
2024-03-26 11:31:12,641 epoch 6 - iter 28/48 - loss 0.08689022 - time (sec): 12.46 - samples/sec: 1526.88 - lr: 0.000015 - momentum: 0.000000
2024-03-26 11:31:14,427 epoch 6 - iter 32/48 - loss 0.08360013 - time (sec): 14.24 - samples/sec: 1546.66 - lr: 0.000015 - momentum: 0.000000
2024-03-26 11:31:16,926 epoch 6 - iter 36/48 - loss 0.09308529 - time (sec): 16.74 - samples/sec: 1516.61 - lr: 0.000014 - momentum: 0.000000
2024-03-26 11:31:19,044 epoch 6 - iter 40/48 - loss 0.08998376 - time (sec): 18.86 - samples/sec: 1506.52 - lr: 0.000014 - momentum: 0.000000
2024-03-26 11:31:20,955 epoch 6 - iter 44/48 - loss 0.09427633 - time (sec): 20.77 - samples/sec: 1514.39 - lr: 0.000014 - momentum: 0.000000
2024-03-26 11:31:22,622 epoch 6 - iter 48/48 - loss 0.09601652 - time (sec): 22.44 - samples/sec: 1536.29 - lr: 0.000014 - momentum: 0.000000
2024-03-26 11:31:22,622 ----------------------------------------------------------------------------------------------------
2024-03-26 11:31:22,622 EPOCH 6 done: loss 0.0960 - lr: 0.000014
2024-03-26 11:31:23,637 DEV : loss 0.16633208096027374 - f1-score (micro avg) 0.9057
2024-03-26 11:31:23,638 saving best model
2024-03-26 11:31:24,064 ----------------------------------------------------------------------------------------------------
2024-03-26 11:31:26,319 epoch 7 - iter 4/48 - loss 0.09949447 - time (sec): 2.25 - samples/sec: 1227.36 - lr: 0.000013 - momentum: 0.000000
2024-03-26 11:31:28,067 epoch 7 - iter 8/48 - loss 0.08834209 - time (sec): 4.00 - samples/sec: 1436.31 - lr: 0.000013 - momentum: 0.000000
2024-03-26 11:31:30,171 epoch 7 - iter 12/48 - loss 0.07538884 - time (sec): 6.10 - samples/sec: 1403.52 - lr: 0.000013 - momentum: 0.000000
2024-03-26 11:31:32,848 epoch 7 - iter 16/48 - loss 0.07115551 - time (sec): 8.78 - samples/sec: 1345.96 - lr: 0.000012 - momentum: 0.000000
2024-03-26 11:31:35,609 epoch 7 - iter 20/48 - loss 0.07329202 - time (sec): 11.54 - samples/sec: 1354.16 - lr: 0.000012 - momentum: 0.000000
2024-03-26 11:31:37,148 epoch 7 - iter 24/48 - loss 0.07469969 - time (sec): 13.08 - samples/sec: 1377.79 - lr: 0.000012 - momentum: 0.000000
2024-03-26 11:31:39,322 epoch 7 - iter 28/48 - loss 0.07052829 - time (sec): 15.25 - samples/sec: 1394.57 - lr: 0.000012 - momentum: 0.000000
2024-03-26 11:31:41,517 epoch 7 - iter 32/48 - loss 0.07200985 - time (sec): 17.45 - samples/sec: 1401.00 - lr: 0.000011 - momentum: 0.000000
2024-03-26 11:31:43,783 epoch 7 - iter 36/48 - loss 0.07551991 - time (sec): 19.72 - samples/sec: 1388.47 - lr: 0.000011 - momentum: 0.000000
2024-03-26 11:31:45,405 epoch 7 - iter 40/48 - loss 0.07178417 - time (sec): 21.34 - samples/sec: 1397.27 - lr: 0.000011 - momentum: 0.000000
2024-03-26 11:31:47,155 epoch 7 - iter 44/48 - loss 0.07612817 - time (sec): 23.09 - samples/sec: 1412.76 - lr: 0.000010 - momentum: 0.000000
2024-03-26 11:31:48,494 epoch 7 - iter 48/48 - loss 0.07589320 - time (sec): 24.43 - samples/sec: 1411.18 - lr: 0.000010 - momentum: 0.000000
2024-03-26 11:31:48,495 ----------------------------------------------------------------------------------------------------
2024-03-26 11:31:48,495 EPOCH 7 done: loss 0.0759 - lr: 0.000010
2024-03-26 11:31:49,434 DEV : loss 0.1753850281238556 - f1-score (micro avg) 0.9099
2024-03-26 11:31:49,435 saving best model
2024-03-26 11:31:49,852 ----------------------------------------------------------------------------------------------------
2024-03-26 11:31:52,193 epoch 8 - iter 4/48 - loss 0.04971259 - time (sec): 2.34 - samples/sec: 1256.69 - lr: 0.000010 - momentum: 0.000000
2024-03-26 11:31:54,792 epoch 8 - iter 8/48 - loss 0.04272157 - time (sec): 4.94 - samples/sec: 1339.53 - lr: 0.000010 - momentum: 0.000000
2024-03-26 11:31:56,850 epoch 8 - iter 12/48 - loss 0.04580288 - time (sec): 7.00 - samples/sec: 1315.34 - lr: 0.000009 - momentum: 0.000000
2024-03-26 11:31:58,964 epoch 8 - iter 16/48 - loss 0.04476270 - time (sec): 9.11 - samples/sec: 1316.14 - lr: 0.000009 - momentum: 0.000000
2024-03-26 11:32:00,486 epoch 8 - iter 20/48 - loss 0.04843952 - time (sec): 10.63 - samples/sec: 1344.78 - lr: 0.000009 - momentum: 0.000000
2024-03-26 11:32:02,983 epoch 8 - iter 24/48 - loss 0.04775011 - time (sec): 13.13 - samples/sec: 1320.97 - lr: 0.000009 - momentum: 0.000000
2024-03-26 11:32:05,218 epoch 8 - iter 28/48 - loss 0.04750025 - time (sec): 15.36 - samples/sec: 1311.92 - lr: 0.000008 - momentum: 0.000000
2024-03-26 11:32:07,589 epoch 8 - iter 32/48 - loss 0.05742224 - time (sec): 17.73 - samples/sec: 1323.77 - lr: 0.000008 - momentum: 0.000000
2024-03-26 11:32:10,891 epoch 8 - iter 36/48 - loss 0.05911377 - time (sec): 21.04 - samples/sec: 1275.71 - lr: 0.000008 - momentum: 0.000000
2024-03-26 11:32:12,982 epoch 8 - iter 40/48 - loss 0.06240256 - time (sec): 23.13 - samples/sec: 1279.67 - lr: 0.000007 - momentum: 0.000000
2024-03-26 11:32:13,802 epoch 8 - iter 44/48 - loss 0.06115800 - time (sec): 23.95 - samples/sec: 1326.62 - lr: 0.000007 - momentum: 0.000000
2024-03-26 11:32:15,674 epoch 8 - iter 48/48 - loss 0.06146428 - time (sec): 25.82 - samples/sec: 1335.10 - lr: 0.000007 - momentum: 0.000000
2024-03-26 11:32:15,674 ----------------------------------------------------------------------------------------------------
2024-03-26 11:32:15,674 EPOCH 8 done: loss 0.0615 - lr: 0.000007
2024-03-26 11:32:16,618 DEV : loss 0.1729622334241867 - f1-score (micro avg) 0.9217
2024-03-26 11:32:16,619 saving best model
2024-03-26 11:32:17,053 ----------------------------------------------------------------------------------------------------
2024-03-26 11:32:19,812 epoch 9 - iter 4/48 - loss 0.02513346 - time (sec): 2.76 - samples/sec: 1195.60 - lr: 0.000007 - momentum: 0.000000
2024-03-26 11:32:21,527 epoch 9 - iter 8/48 - loss 0.03936410 - time (sec): 4.47 - samples/sec: 1282.75 - lr: 0.000006 - momentum: 0.000000
2024-03-26 11:32:23,745 epoch 9 - iter 12/48 - loss 0.04345948 - time (sec): 6.69 - samples/sec: 1341.51 - lr: 0.000006 - momentum: 0.000000
2024-03-26 11:32:25,919 epoch 9 - iter 16/48 - loss 0.04929510 - time (sec): 8.87 - samples/sec: 1365.99 - lr: 0.000006 - momentum: 0.000000
2024-03-26 11:32:28,305 epoch 9 - iter 20/48 - loss 0.04329415 - time (sec): 11.25 - samples/sec: 1344.62 - lr: 0.000006 - momentum: 0.000000
2024-03-26 11:32:30,275 epoch 9 - iter 24/48 - loss 0.04316844 - time (sec): 13.22 - samples/sec: 1339.34 - lr: 0.000005 - momentum: 0.000000
2024-03-26 11:32:33,584 epoch 9 - iter 28/48 - loss 0.04521706 - time (sec): 16.53 - samples/sec: 1292.32 - lr: 0.000005 - momentum: 0.000000
2024-03-26 11:32:35,023 epoch 9 - iter 32/48 - loss 0.04632784 - time (sec): 17.97 - samples/sec: 1329.46 - lr: 0.000005 - momentum: 0.000000
2024-03-26 11:32:37,559 epoch 9 - iter 36/48 - loss 0.04576751 - time (sec): 20.51 - samples/sec: 1314.24 - lr: 0.000004 - momentum: 0.000000
2024-03-26 11:32:39,087 epoch 9 - iter 40/48 - loss 0.04672450 - time (sec): 22.03 - samples/sec: 1330.69 - lr: 0.000004 - momentum: 0.000000
2024-03-26 11:32:40,686 epoch 9 - iter 44/48 - loss 0.05077131 - time (sec): 23.63 - samples/sec: 1346.09 - lr: 0.000004 - momentum: 0.000000
2024-03-26 11:32:42,147 epoch 9 - iter 48/48 - loss 0.05019774 - time (sec): 25.09 - samples/sec: 1373.75 - lr: 0.000004 - momentum: 0.000000
2024-03-26 11:32:42,147 ----------------------------------------------------------------------------------------------------
2024-03-26 11:32:42,147 EPOCH 9 done: loss 0.0502 - lr: 0.000004
2024-03-26 11:32:43,109 DEV : loss 0.1699032187461853 - f1-score (micro avg) 0.9231
2024-03-26 11:32:43,110 saving best model
2024-03-26 11:32:43,558 ----------------------------------------------------------------------------------------------------
2024-03-26 11:32:45,998 epoch 10 - iter 4/48 - loss 0.03662752 - time (sec): 2.44 - samples/sec: 1349.96 - lr: 0.000003 - momentum: 0.000000
2024-03-26 11:32:47,962 epoch 10 - iter 8/48 - loss 0.03037126 - time (sec): 4.40 - samples/sec: 1327.43 - lr: 0.000003 - momentum: 0.000000
2024-03-26 11:32:49,206 epoch 10 - iter 12/48 - loss 0.04628769 - time (sec): 5.65 - samples/sec: 1477.30 - lr: 0.000003 - momentum: 0.000000
2024-03-26 11:32:50,823 epoch 10 - iter 16/48 - loss 0.04875219 - time (sec): 7.26 - samples/sec: 1544.68 - lr: 0.000002 - momentum: 0.000000
2024-03-26 11:32:52,553 epoch 10 - iter 20/48 - loss 0.04803083 - time (sec): 8.99 - samples/sec: 1587.29 - lr: 0.000002 - momentum: 0.000000
2024-03-26 11:32:54,697 epoch 10 - iter 24/48 - loss 0.04545013 - time (sec): 11.14 - samples/sec: 1530.21 - lr: 0.000002 - momentum: 0.000000
2024-03-26 11:32:56,857 epoch 10 - iter 28/48 - loss 0.04259668 - time (sec): 13.30 - samples/sec: 1500.05 - lr: 0.000002 - momentum: 0.000000
2024-03-26 11:32:59,062 epoch 10 - iter 32/48 - loss 0.04332711 - time (sec): 15.50 - samples/sec: 1504.92 - lr: 0.000001 - momentum: 0.000000
2024-03-26 11:33:00,477 epoch 10 - iter 36/48 - loss 0.04375102 - time (sec): 16.92 - samples/sec: 1507.29 - lr: 0.000001 - momentum: 0.000000
2024-03-26 11:33:03,190 epoch 10 - iter 40/48 - loss 0.04177886 - time (sec): 19.63 - samples/sec: 1470.02 - lr: 0.000001 - momentum: 0.000000
2024-03-26 11:33:05,735 epoch 10 - iter 44/48 - loss 0.04534989 - time (sec): 22.18 - samples/sec: 1449.98 - lr: 0.000001 - momentum: 0.000000
2024-03-26 11:33:07,424 epoch 10 - iter 48/48 - loss 0.04586777 - time (sec): 23.87 - samples/sec: 1444.45 - lr: 0.000000 - momentum: 0.000000
2024-03-26 11:33:07,425 ----------------------------------------------------------------------------------------------------
2024-03-26 11:33:07,425 EPOCH 10 done: loss 0.0459 - lr: 0.000000
2024-03-26 11:33:08,375 DEV : loss 0.17032475769519806 - f1-score (micro avg) 0.9201
2024-03-26 11:33:08,648 ----------------------------------------------------------------------------------------------------
2024-03-26 11:33:08,648 Loading model from best epoch ...
2024-03-26 11:33:09,467 SequenceTagger predicts: Dictionary with 17 tags: O, S-Unternehmen, B-Unternehmen, E-Unternehmen, I-Unternehmen, S-Auslagerung, B-Auslagerung, E-Auslagerung, I-Auslagerung, S-Ort, B-Ort, E-Ort, I-Ort, S-Software, B-Software, E-Software, I-Software
2024-03-26 11:33:10,236
Results:
- F-score (micro) 0.899
- F-score (macro) 0.6855
- Accuracy 0.8188
By class:
precision recall f1-score support
Unternehmen 0.8826 0.8759 0.8792 266
Auslagerung 0.8496 0.9076 0.8777 249
Ort 0.9779 0.9925 0.9852 134
Software 0.0000 0.0000 0.0000 0
micro avg 0.8862 0.9122 0.8990 649
macro avg 0.6775 0.6940 0.6855 649
weighted avg 0.8896 0.9122 0.9005 649
2024-03-26 11:33:10,236 ----------------------------------------------------------------------------------------------------
|