Upload ./training.log with huggingface_hub
Browse files- training.log +246 -0
training.log
ADDED
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-23 14:59:24,306 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-23 14:59:24,307 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(64001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-11): 12 x BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
(pooler): BertPooler(
|
41 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(activation): Tanh()
|
43 |
+
)
|
44 |
+
)
|
45 |
+
)
|
46 |
+
(locked_dropout): LockedDropout(p=0.5)
|
47 |
+
(linear): Linear(in_features=768, out_features=25, bias=True)
|
48 |
+
(loss_function): CrossEntropyLoss()
|
49 |
+
)"
|
50 |
+
2023-10-23 14:59:24,307 ----------------------------------------------------------------------------------------------------
|
51 |
+
2023-10-23 14:59:24,307 MultiCorpus: 1100 train + 206 dev + 240 test sentences
|
52 |
+
- NER_HIPE_2022 Corpus: 1100 train + 206 dev + 240 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/ajmc/de/with_doc_seperator
|
53 |
+
2023-10-23 14:59:24,307 ----------------------------------------------------------------------------------------------------
|
54 |
+
2023-10-23 14:59:24,307 Train: 1100 sentences
|
55 |
+
2023-10-23 14:59:24,307 (train_with_dev=False, train_with_test=False)
|
56 |
+
2023-10-23 14:59:24,307 ----------------------------------------------------------------------------------------------------
|
57 |
+
2023-10-23 14:59:24,307 Training Params:
|
58 |
+
2023-10-23 14:59:24,307 - learning_rate: "5e-05"
|
59 |
+
2023-10-23 14:59:24,307 - mini_batch_size: "8"
|
60 |
+
2023-10-23 14:59:24,307 - max_epochs: "10"
|
61 |
+
2023-10-23 14:59:24,307 - shuffle: "True"
|
62 |
+
2023-10-23 14:59:24,307 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-10-23 14:59:24,308 Plugins:
|
64 |
+
2023-10-23 14:59:24,308 - TensorboardLogger
|
65 |
+
2023-10-23 14:59:24,308 - LinearScheduler | warmup_fraction: '0.1'
|
66 |
+
2023-10-23 14:59:24,308 ----------------------------------------------------------------------------------------------------
|
67 |
+
2023-10-23 14:59:24,308 Final evaluation on model from best epoch (best-model.pt)
|
68 |
+
2023-10-23 14:59:24,308 - metric: "('micro avg', 'f1-score')"
|
69 |
+
2023-10-23 14:59:24,308 ----------------------------------------------------------------------------------------------------
|
70 |
+
2023-10-23 14:59:24,308 Computation:
|
71 |
+
2023-10-23 14:59:24,308 - compute on device: cuda:0
|
72 |
+
2023-10-23 14:59:24,308 - embedding storage: none
|
73 |
+
2023-10-23 14:59:24,308 ----------------------------------------------------------------------------------------------------
|
74 |
+
2023-10-23 14:59:24,308 Model training base path: "hmbench-ajmc/de-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1"
|
75 |
+
2023-10-23 14:59:24,308 ----------------------------------------------------------------------------------------------------
|
76 |
+
2023-10-23 14:59:24,308 ----------------------------------------------------------------------------------------------------
|
77 |
+
2023-10-23 14:59:24,308 Logging anything other than scalars to TensorBoard is currently not supported.
|
78 |
+
2023-10-23 14:59:25,027 epoch 1 - iter 13/138 - loss 3.66543780 - time (sec): 0.72 - samples/sec: 3026.20 - lr: 0.000004 - momentum: 0.000000
|
79 |
+
2023-10-23 14:59:25,745 epoch 1 - iter 26/138 - loss 3.00984760 - time (sec): 1.44 - samples/sec: 2969.12 - lr: 0.000009 - momentum: 0.000000
|
80 |
+
2023-10-23 14:59:26,450 epoch 1 - iter 39/138 - loss 2.39180029 - time (sec): 2.14 - samples/sec: 2875.04 - lr: 0.000014 - momentum: 0.000000
|
81 |
+
2023-10-23 14:59:27,243 epoch 1 - iter 52/138 - loss 1.93634022 - time (sec): 2.93 - samples/sec: 2845.79 - lr: 0.000018 - momentum: 0.000000
|
82 |
+
2023-10-23 14:59:27,962 epoch 1 - iter 65/138 - loss 1.68757988 - time (sec): 3.65 - samples/sec: 2879.97 - lr: 0.000023 - momentum: 0.000000
|
83 |
+
2023-10-23 14:59:28,690 epoch 1 - iter 78/138 - loss 1.48023065 - time (sec): 4.38 - samples/sec: 2886.24 - lr: 0.000028 - momentum: 0.000000
|
84 |
+
2023-10-23 14:59:29,408 epoch 1 - iter 91/138 - loss 1.32188926 - time (sec): 5.10 - samples/sec: 2900.66 - lr: 0.000033 - momentum: 0.000000
|
85 |
+
2023-10-23 14:59:30,130 epoch 1 - iter 104/138 - loss 1.18393768 - time (sec): 5.82 - samples/sec: 2915.39 - lr: 0.000037 - momentum: 0.000000
|
86 |
+
2023-10-23 14:59:30,841 epoch 1 - iter 117/138 - loss 1.07131939 - time (sec): 6.53 - samples/sec: 2945.55 - lr: 0.000042 - momentum: 0.000000
|
87 |
+
2023-10-23 14:59:31,603 epoch 1 - iter 130/138 - loss 0.98230483 - time (sec): 7.29 - samples/sec: 2950.92 - lr: 0.000047 - momentum: 0.000000
|
88 |
+
2023-10-23 14:59:32,041 ----------------------------------------------------------------------------------------------------
|
89 |
+
2023-10-23 14:59:32,041 EPOCH 1 done: loss 0.9408 - lr: 0.000047
|
90 |
+
2023-10-23 14:59:32,466 DEV : loss 0.17025014758110046 - f1-score (micro avg) 0.7773
|
91 |
+
2023-10-23 14:59:32,472 saving best model
|
92 |
+
2023-10-23 14:59:32,868 ----------------------------------------------------------------------------------------------------
|
93 |
+
2023-10-23 14:59:33,590 epoch 2 - iter 13/138 - loss 0.14784199 - time (sec): 0.72 - samples/sec: 2802.71 - lr: 0.000050 - momentum: 0.000000
|
94 |
+
2023-10-23 14:59:34,321 epoch 2 - iter 26/138 - loss 0.11871101 - time (sec): 1.45 - samples/sec: 2935.30 - lr: 0.000049 - momentum: 0.000000
|
95 |
+
2023-10-23 14:59:35,042 epoch 2 - iter 39/138 - loss 0.14691239 - time (sec): 2.17 - samples/sec: 2897.04 - lr: 0.000048 - momentum: 0.000000
|
96 |
+
2023-10-23 14:59:35,847 epoch 2 - iter 52/138 - loss 0.15325754 - time (sec): 2.98 - samples/sec: 2875.85 - lr: 0.000048 - momentum: 0.000000
|
97 |
+
2023-10-23 14:59:36,572 epoch 2 - iter 65/138 - loss 0.15032886 - time (sec): 3.70 - samples/sec: 2879.84 - lr: 0.000047 - momentum: 0.000000
|
98 |
+
2023-10-23 14:59:37,291 epoch 2 - iter 78/138 - loss 0.15293320 - time (sec): 4.42 - samples/sec: 2905.21 - lr: 0.000047 - momentum: 0.000000
|
99 |
+
2023-10-23 14:59:38,012 epoch 2 - iter 91/138 - loss 0.14945325 - time (sec): 5.14 - samples/sec: 2934.83 - lr: 0.000046 - momentum: 0.000000
|
100 |
+
2023-10-23 14:59:38,796 epoch 2 - iter 104/138 - loss 0.15342696 - time (sec): 5.93 - samples/sec: 2916.57 - lr: 0.000046 - momentum: 0.000000
|
101 |
+
2023-10-23 14:59:39,528 epoch 2 - iter 117/138 - loss 0.14987829 - time (sec): 6.66 - samples/sec: 2915.77 - lr: 0.000045 - momentum: 0.000000
|
102 |
+
2023-10-23 14:59:40,253 epoch 2 - iter 130/138 - loss 0.15091087 - time (sec): 7.38 - samples/sec: 2922.83 - lr: 0.000045 - momentum: 0.000000
|
103 |
+
2023-10-23 14:59:40,709 ----------------------------------------------------------------------------------------------------
|
104 |
+
2023-10-23 14:59:40,709 EPOCH 2 done: loss 0.1508 - lr: 0.000045
|
105 |
+
2023-10-23 14:59:41,247 DEV : loss 0.12781710922718048 - f1-score (micro avg) 0.8111
|
106 |
+
2023-10-23 14:59:41,252 saving best model
|
107 |
+
2023-10-23 14:59:41,793 ----------------------------------------------------------------------------------------------------
|
108 |
+
2023-10-23 14:59:42,587 epoch 3 - iter 13/138 - loss 0.08645294 - time (sec): 0.79 - samples/sec: 2604.66 - lr: 0.000044 - momentum: 0.000000
|
109 |
+
2023-10-23 14:59:43,329 epoch 3 - iter 26/138 - loss 0.08482620 - time (sec): 1.53 - samples/sec: 2803.15 - lr: 0.000043 - momentum: 0.000000
|
110 |
+
2023-10-23 14:59:44,087 epoch 3 - iter 39/138 - loss 0.07421142 - time (sec): 2.29 - samples/sec: 2951.16 - lr: 0.000043 - momentum: 0.000000
|
111 |
+
2023-10-23 14:59:44,821 epoch 3 - iter 52/138 - loss 0.07684756 - time (sec): 3.02 - samples/sec: 2890.92 - lr: 0.000042 - momentum: 0.000000
|
112 |
+
2023-10-23 14:59:45,575 epoch 3 - iter 65/138 - loss 0.07988944 - time (sec): 3.78 - samples/sec: 2892.17 - lr: 0.000042 - momentum: 0.000000
|
113 |
+
2023-10-23 14:59:46,359 epoch 3 - iter 78/138 - loss 0.08173290 - time (sec): 4.56 - samples/sec: 2809.17 - lr: 0.000041 - momentum: 0.000000
|
114 |
+
2023-10-23 14:59:47,106 epoch 3 - iter 91/138 - loss 0.08449295 - time (sec): 5.31 - samples/sec: 2813.00 - lr: 0.000041 - momentum: 0.000000
|
115 |
+
2023-10-23 14:59:47,859 epoch 3 - iter 104/138 - loss 0.08365887 - time (sec): 6.06 - samples/sec: 2815.61 - lr: 0.000040 - momentum: 0.000000
|
116 |
+
2023-10-23 14:59:48,597 epoch 3 - iter 117/138 - loss 0.08635961 - time (sec): 6.80 - samples/sec: 2814.13 - lr: 0.000040 - momentum: 0.000000
|
117 |
+
2023-10-23 14:59:49,362 epoch 3 - iter 130/138 - loss 0.08894879 - time (sec): 7.57 - samples/sec: 2840.59 - lr: 0.000039 - momentum: 0.000000
|
118 |
+
2023-10-23 14:59:49,833 ----------------------------------------------------------------------------------------------------
|
119 |
+
2023-10-23 14:59:49,833 EPOCH 3 done: loss 0.0867 - lr: 0.000039
|
120 |
+
2023-10-23 14:59:50,542 DEV : loss 0.12280590832233429 - f1-score (micro avg) 0.8447
|
121 |
+
2023-10-23 14:59:50,547 saving best model
|
122 |
+
2023-10-23 14:59:51,053 ----------------------------------------------------------------------------------------------------
|
123 |
+
2023-10-23 14:59:51,872 epoch 4 - iter 13/138 - loss 0.05732552 - time (sec): 0.82 - samples/sec: 2575.68 - lr: 0.000038 - momentum: 0.000000
|
124 |
+
2023-10-23 14:59:52,594 epoch 4 - iter 26/138 - loss 0.05523775 - time (sec): 1.54 - samples/sec: 2899.82 - lr: 0.000038 - momentum: 0.000000
|
125 |
+
2023-10-23 14:59:53,306 epoch 4 - iter 39/138 - loss 0.05726177 - time (sec): 2.25 - samples/sec: 2827.15 - lr: 0.000037 - momentum: 0.000000
|
126 |
+
2023-10-23 14:59:54,023 epoch 4 - iter 52/138 - loss 0.05790800 - time (sec): 2.97 - samples/sec: 2893.97 - lr: 0.000037 - momentum: 0.000000
|
127 |
+
2023-10-23 14:59:54,753 epoch 4 - iter 65/138 - loss 0.05696300 - time (sec): 3.70 - samples/sec: 2898.53 - lr: 0.000036 - momentum: 0.000000
|
128 |
+
2023-10-23 14:59:55,463 epoch 4 - iter 78/138 - loss 0.05800066 - time (sec): 4.41 - samples/sec: 2861.98 - lr: 0.000036 - momentum: 0.000000
|
129 |
+
2023-10-23 14:59:56,181 epoch 4 - iter 91/138 - loss 0.05510131 - time (sec): 5.12 - samples/sec: 2878.87 - lr: 0.000035 - momentum: 0.000000
|
130 |
+
2023-10-23 14:59:56,894 epoch 4 - iter 104/138 - loss 0.05698036 - time (sec): 5.84 - samples/sec: 2905.22 - lr: 0.000035 - momentum: 0.000000
|
131 |
+
2023-10-23 14:59:57,614 epoch 4 - iter 117/138 - loss 0.05516748 - time (sec): 6.56 - samples/sec: 2934.96 - lr: 0.000034 - momentum: 0.000000
|
132 |
+
2023-10-23 14:59:58,324 epoch 4 - iter 130/138 - loss 0.05554848 - time (sec): 7.27 - samples/sec: 2943.58 - lr: 0.000034 - momentum: 0.000000
|
133 |
+
2023-10-23 14:59:58,765 ----------------------------------------------------------------------------------------------------
|
134 |
+
2023-10-23 14:59:58,765 EPOCH 4 done: loss 0.0548 - lr: 0.000034
|
135 |
+
2023-10-23 14:59:59,315 DEV : loss 0.13340476155281067 - f1-score (micro avg) 0.8653
|
136 |
+
2023-10-23 14:59:59,320 saving best model
|
137 |
+
2023-10-23 14:59:59,850 ----------------------------------------------------------------------------------------------------
|
138 |
+
2023-10-23 15:00:00,561 epoch 5 - iter 13/138 - loss 0.02190968 - time (sec): 0.71 - samples/sec: 2839.29 - lr: 0.000033 - momentum: 0.000000
|
139 |
+
2023-10-23 15:00:01,278 epoch 5 - iter 26/138 - loss 0.03255026 - time (sec): 1.42 - samples/sec: 2948.57 - lr: 0.000032 - momentum: 0.000000
|
140 |
+
2023-10-23 15:00:01,994 epoch 5 - iter 39/138 - loss 0.04017228 - time (sec): 2.14 - samples/sec: 2944.89 - lr: 0.000032 - momentum: 0.000000
|
141 |
+
2023-10-23 15:00:02,723 epoch 5 - iter 52/138 - loss 0.05156922 - time (sec): 2.87 - samples/sec: 2939.16 - lr: 0.000031 - momentum: 0.000000
|
142 |
+
2023-10-23 15:00:03,439 epoch 5 - iter 65/138 - loss 0.05092015 - time (sec): 3.58 - samples/sec: 2910.39 - lr: 0.000031 - momentum: 0.000000
|
143 |
+
2023-10-23 15:00:04,172 epoch 5 - iter 78/138 - loss 0.04808824 - time (sec): 4.32 - samples/sec: 2931.55 - lr: 0.000030 - momentum: 0.000000
|
144 |
+
2023-10-23 15:00:04,888 epoch 5 - iter 91/138 - loss 0.04539131 - time (sec): 5.03 - samples/sec: 2964.95 - lr: 0.000030 - momentum: 0.000000
|
145 |
+
2023-10-23 15:00:05,600 epoch 5 - iter 104/138 - loss 0.04367704 - time (sec): 5.75 - samples/sec: 2983.60 - lr: 0.000029 - momentum: 0.000000
|
146 |
+
2023-10-23 15:00:06,328 epoch 5 - iter 117/138 - loss 0.04343764 - time (sec): 6.47 - samples/sec: 2981.65 - lr: 0.000029 - momentum: 0.000000
|
147 |
+
2023-10-23 15:00:07,061 epoch 5 - iter 130/138 - loss 0.04444769 - time (sec): 7.21 - samples/sec: 2988.59 - lr: 0.000028 - momentum: 0.000000
|
148 |
+
2023-10-23 15:00:07,496 ----------------------------------------------------------------------------------------------------
|
149 |
+
2023-10-23 15:00:07,496 EPOCH 5 done: loss 0.0447 - lr: 0.000028
|
150 |
+
2023-10-23 15:00:08,032 DEV : loss 0.13237358629703522 - f1-score (micro avg) 0.8854
|
151 |
+
2023-10-23 15:00:08,038 saving best model
|
152 |
+
2023-10-23 15:00:08,590 ----------------------------------------------------------------------------------------------------
|
153 |
+
2023-10-23 15:00:09,309 epoch 6 - iter 13/138 - loss 0.03222312 - time (sec): 0.72 - samples/sec: 3156.71 - lr: 0.000027 - momentum: 0.000000
|
154 |
+
2023-10-23 15:00:10,022 epoch 6 - iter 26/138 - loss 0.02407024 - time (sec): 1.43 - samples/sec: 2975.50 - lr: 0.000027 - momentum: 0.000000
|
155 |
+
2023-10-23 15:00:10,738 epoch 6 - iter 39/138 - loss 0.02068903 - time (sec): 2.15 - samples/sec: 3069.60 - lr: 0.000026 - momentum: 0.000000
|
156 |
+
2023-10-23 15:00:11,452 epoch 6 - iter 52/138 - loss 0.03086218 - time (sec): 2.86 - samples/sec: 3087.93 - lr: 0.000026 - momentum: 0.000000
|
157 |
+
2023-10-23 15:00:12,173 epoch 6 - iter 65/138 - loss 0.03106766 - time (sec): 3.58 - samples/sec: 3080.79 - lr: 0.000025 - momentum: 0.000000
|
158 |
+
2023-10-23 15:00:12,884 epoch 6 - iter 78/138 - loss 0.03356739 - time (sec): 4.29 - samples/sec: 3029.68 - lr: 0.000025 - momentum: 0.000000
|
159 |
+
2023-10-23 15:00:13,599 epoch 6 - iter 91/138 - loss 0.03089337 - time (sec): 5.01 - samples/sec: 3050.62 - lr: 0.000024 - momentum: 0.000000
|
160 |
+
2023-10-23 15:00:14,300 epoch 6 - iter 104/138 - loss 0.03442090 - time (sec): 5.71 - samples/sec: 3025.17 - lr: 0.000024 - momentum: 0.000000
|
161 |
+
2023-10-23 15:00:15,035 epoch 6 - iter 117/138 - loss 0.03202038 - time (sec): 6.44 - samples/sec: 3021.98 - lr: 0.000023 - momentum: 0.000000
|
162 |
+
2023-10-23 15:00:15,771 epoch 6 - iter 130/138 - loss 0.03533535 - time (sec): 7.18 - samples/sec: 3006.32 - lr: 0.000023 - momentum: 0.000000
|
163 |
+
2023-10-23 15:00:16,197 ----------------------------------------------------------------------------------------------------
|
164 |
+
2023-10-23 15:00:16,197 EPOCH 6 done: loss 0.0364 - lr: 0.000023
|
165 |
+
2023-10-23 15:00:16,729 DEV : loss 0.15275059640407562 - f1-score (micro avg) 0.8938
|
166 |
+
2023-10-23 15:00:16,735 saving best model
|
167 |
+
2023-10-23 15:00:17,279 ----------------------------------------------------------------------------------------------------
|
168 |
+
2023-10-23 15:00:18,001 epoch 7 - iter 13/138 - loss 0.00527848 - time (sec): 0.72 - samples/sec: 2744.44 - lr: 0.000022 - momentum: 0.000000
|
169 |
+
2023-10-23 15:00:18,717 epoch 7 - iter 26/138 - loss 0.01820801 - time (sec): 1.44 - samples/sec: 2926.12 - lr: 0.000021 - momentum: 0.000000
|
170 |
+
2023-10-23 15:00:19,427 epoch 7 - iter 39/138 - loss 0.01831966 - time (sec): 2.15 - samples/sec: 2962.30 - lr: 0.000021 - momentum: 0.000000
|
171 |
+
2023-10-23 15:00:20,142 epoch 7 - iter 52/138 - loss 0.02742555 - time (sec): 2.86 - samples/sec: 3044.56 - lr: 0.000020 - momentum: 0.000000
|
172 |
+
2023-10-23 15:00:20,875 epoch 7 - iter 65/138 - loss 0.02380596 - time (sec): 3.59 - samples/sec: 3024.39 - lr: 0.000020 - momentum: 0.000000
|
173 |
+
2023-10-23 15:00:21,601 epoch 7 - iter 78/138 - loss 0.02668274 - time (sec): 4.32 - samples/sec: 3007.31 - lr: 0.000019 - momentum: 0.000000
|
174 |
+
2023-10-23 15:00:22,323 epoch 7 - iter 91/138 - loss 0.02478362 - time (sec): 5.04 - samples/sec: 3037.01 - lr: 0.000019 - momentum: 0.000000
|
175 |
+
2023-10-23 15:00:23,037 epoch 7 - iter 104/138 - loss 0.02409141 - time (sec): 5.76 - samples/sec: 3014.13 - lr: 0.000018 - momentum: 0.000000
|
176 |
+
2023-10-23 15:00:23,746 epoch 7 - iter 117/138 - loss 0.02390261 - time (sec): 6.46 - samples/sec: 3022.82 - lr: 0.000018 - momentum: 0.000000
|
177 |
+
2023-10-23 15:00:24,451 epoch 7 - iter 130/138 - loss 0.02278232 - time (sec): 7.17 - samples/sec: 3011.96 - lr: 0.000017 - momentum: 0.000000
|
178 |
+
2023-10-23 15:00:24,880 ----------------------------------------------------------------------------------------------------
|
179 |
+
2023-10-23 15:00:24,881 EPOCH 7 done: loss 0.0232 - lr: 0.000017
|
180 |
+
2023-10-23 15:00:25,413 DEV : loss 0.1645553708076477 - f1-score (micro avg) 0.883
|
181 |
+
2023-10-23 15:00:25,418 ----------------------------------------------------------------------------------------------------
|
182 |
+
2023-10-23 15:00:26,141 epoch 8 - iter 13/138 - loss 0.03132831 - time (sec): 0.72 - samples/sec: 3036.44 - lr: 0.000016 - momentum: 0.000000
|
183 |
+
2023-10-23 15:00:26,851 epoch 8 - iter 26/138 - loss 0.03228913 - time (sec): 1.43 - samples/sec: 3076.10 - lr: 0.000016 - momentum: 0.000000
|
184 |
+
2023-10-23 15:00:27,565 epoch 8 - iter 39/138 - loss 0.02750764 - time (sec): 2.15 - samples/sec: 2978.19 - lr: 0.000015 - momentum: 0.000000
|
185 |
+
2023-10-23 15:00:28,292 epoch 8 - iter 52/138 - loss 0.02386624 - time (sec): 2.87 - samples/sec: 3066.68 - lr: 0.000015 - momentum: 0.000000
|
186 |
+
2023-10-23 15:00:29,005 epoch 8 - iter 65/138 - loss 0.02192605 - time (sec): 3.59 - samples/sec: 3071.37 - lr: 0.000014 - momentum: 0.000000
|
187 |
+
2023-10-23 15:00:29,709 epoch 8 - iter 78/138 - loss 0.01935845 - time (sec): 4.29 - samples/sec: 3028.11 - lr: 0.000014 - momentum: 0.000000
|
188 |
+
2023-10-23 15:00:30,419 epoch 8 - iter 91/138 - loss 0.01854524 - time (sec): 5.00 - samples/sec: 3005.90 - lr: 0.000013 - momentum: 0.000000
|
189 |
+
2023-10-23 15:00:31,127 epoch 8 - iter 104/138 - loss 0.01754654 - time (sec): 5.71 - samples/sec: 3037.43 - lr: 0.000013 - momentum: 0.000000
|
190 |
+
2023-10-23 15:00:31,844 epoch 8 - iter 117/138 - loss 0.01644821 - time (sec): 6.42 - samples/sec: 3044.82 - lr: 0.000012 - momentum: 0.000000
|
191 |
+
2023-10-23 15:00:32,546 epoch 8 - iter 130/138 - loss 0.01595208 - time (sec): 7.13 - samples/sec: 3027.96 - lr: 0.000012 - momentum: 0.000000
|
192 |
+
2023-10-23 15:00:32,977 ----------------------------------------------------------------------------------------------------
|
193 |
+
2023-10-23 15:00:32,977 EPOCH 8 done: loss 0.0162 - lr: 0.000012
|
194 |
+
2023-10-23 15:00:33,512 DEV : loss 0.16538017988204956 - f1-score (micro avg) 0.8924
|
195 |
+
2023-10-23 15:00:33,517 ----------------------------------------------------------------------------------------------------
|
196 |
+
2023-10-23 15:00:34,230 epoch 9 - iter 13/138 - loss 0.02788626 - time (sec): 0.71 - samples/sec: 2745.49 - lr: 0.000011 - momentum: 0.000000
|
197 |
+
2023-10-23 15:00:34,951 epoch 9 - iter 26/138 - loss 0.01954824 - time (sec): 1.43 - samples/sec: 3002.40 - lr: 0.000010 - momentum: 0.000000
|
198 |
+
2023-10-23 15:00:35,659 epoch 9 - iter 39/138 - loss 0.01360116 - time (sec): 2.14 - samples/sec: 2984.85 - lr: 0.000010 - momentum: 0.000000
|
199 |
+
2023-10-23 15:00:36,369 epoch 9 - iter 52/138 - loss 0.01102750 - time (sec): 2.85 - samples/sec: 2994.57 - lr: 0.000009 - momentum: 0.000000
|
200 |
+
2023-10-23 15:00:37,087 epoch 9 - iter 65/138 - loss 0.01089929 - time (sec): 3.57 - samples/sec: 3021.95 - lr: 0.000009 - momentum: 0.000000
|
201 |
+
2023-10-23 15:00:37,808 epoch 9 - iter 78/138 - loss 0.01437039 - time (sec): 4.29 - samples/sec: 3072.07 - lr: 0.000008 - momentum: 0.000000
|
202 |
+
2023-10-23 15:00:38,526 epoch 9 - iter 91/138 - loss 0.01440842 - time (sec): 5.01 - samples/sec: 3068.49 - lr: 0.000008 - momentum: 0.000000
|
203 |
+
2023-10-23 15:00:39,241 epoch 9 - iter 104/138 - loss 0.01322011 - time (sec): 5.72 - samples/sec: 3013.70 - lr: 0.000007 - momentum: 0.000000
|
204 |
+
2023-10-23 15:00:39,951 epoch 9 - iter 117/138 - loss 0.01204757 - time (sec): 6.43 - samples/sec: 2979.71 - lr: 0.000007 - momentum: 0.000000
|
205 |
+
2023-10-23 15:00:40,696 epoch 9 - iter 130/138 - loss 0.01145643 - time (sec): 7.18 - samples/sec: 3030.74 - lr: 0.000006 - momentum: 0.000000
|
206 |
+
2023-10-23 15:00:41,121 ----------------------------------------------------------------------------------------------------
|
207 |
+
2023-10-23 15:00:41,121 EPOCH 9 done: loss 0.0113 - lr: 0.000006
|
208 |
+
2023-10-23 15:00:41,656 DEV : loss 0.17684748768806458 - f1-score (micro avg) 0.8894
|
209 |
+
2023-10-23 15:00:41,661 ----------------------------------------------------------------------------------------------------
|
210 |
+
2023-10-23 15:00:42,380 epoch 10 - iter 13/138 - loss 0.00794737 - time (sec): 0.72 - samples/sec: 2884.96 - lr: 0.000005 - momentum: 0.000000
|
211 |
+
2023-10-23 15:00:43,098 epoch 10 - iter 26/138 - loss 0.00943552 - time (sec): 1.44 - samples/sec: 2951.74 - lr: 0.000005 - momentum: 0.000000
|
212 |
+
2023-10-23 15:00:43,822 epoch 10 - iter 39/138 - loss 0.00724063 - time (sec): 2.16 - samples/sec: 2948.75 - lr: 0.000004 - momentum: 0.000000
|
213 |
+
2023-10-23 15:00:44,535 epoch 10 - iter 52/138 - loss 0.00610859 - time (sec): 2.87 - samples/sec: 2948.72 - lr: 0.000004 - momentum: 0.000000
|
214 |
+
2023-10-23 15:00:45,237 epoch 10 - iter 65/138 - loss 0.00718335 - time (sec): 3.58 - samples/sec: 2912.38 - lr: 0.000003 - momentum: 0.000000
|
215 |
+
2023-10-23 15:00:45,949 epoch 10 - iter 78/138 - loss 0.00609465 - time (sec): 4.29 - samples/sec: 2974.64 - lr: 0.000003 - momentum: 0.000000
|
216 |
+
2023-10-23 15:00:46,661 epoch 10 - iter 91/138 - loss 0.00724821 - time (sec): 5.00 - samples/sec: 2992.73 - lr: 0.000002 - momentum: 0.000000
|
217 |
+
2023-10-23 15:00:47,375 epoch 10 - iter 104/138 - loss 0.00669768 - time (sec): 5.71 - samples/sec: 3002.23 - lr: 0.000002 - momentum: 0.000000
|
218 |
+
2023-10-23 15:00:48,096 epoch 10 - iter 117/138 - loss 0.01007155 - time (sec): 6.43 - samples/sec: 3012.47 - lr: 0.000001 - momentum: 0.000000
|
219 |
+
2023-10-23 15:00:48,811 epoch 10 - iter 130/138 - loss 0.00905841 - time (sec): 7.15 - samples/sec: 3019.54 - lr: 0.000000 - momentum: 0.000000
|
220 |
+
2023-10-23 15:00:49,255 ----------------------------------------------------------------------------------------------------
|
221 |
+
2023-10-23 15:00:49,256 EPOCH 10 done: loss 0.0087 - lr: 0.000000
|
222 |
+
2023-10-23 15:00:49,787 DEV : loss 0.17404906451702118 - f1-score (micro avg) 0.8951
|
223 |
+
2023-10-23 15:00:49,792 saving best model
|
224 |
+
2023-10-23 15:00:50,737 ----------------------------------------------------------------------------------------------------
|
225 |
+
2023-10-23 15:00:50,738 Loading model from best epoch ...
|
226 |
+
2023-10-23 15:00:52,533 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
|
227 |
+
2023-10-23 15:00:53,190
|
228 |
+
Results:
|
229 |
+
- F-score (micro) 0.9026
|
230 |
+
- F-score (macro) 0.8381
|
231 |
+
- Accuracy 0.8407
|
232 |
+
|
233 |
+
By class:
|
234 |
+
precision recall f1-score support
|
235 |
+
|
236 |
+
scope 0.8876 0.8977 0.8927 176
|
237 |
+
pers 1.0000 0.9297 0.9636 128
|
238 |
+
work 0.8182 0.8514 0.8344 74
|
239 |
+
object 1.0000 1.0000 1.0000 2
|
240 |
+
loc 0.5000 0.5000 0.5000 2
|
241 |
+
|
242 |
+
micro avg 0.9074 0.8979 0.9026 382
|
243 |
+
macro avg 0.8412 0.8358 0.8381 382
|
244 |
+
weighted avg 0.9104 0.8979 0.9036 382
|
245 |
+
|
246 |
+
2023-10-23 15:00:53,190 ----------------------------------------------------------------------------------------------------
|