Upload ./training.log with huggingface_hub
Browse files- training.log +248 -0
training.log
ADDED
@@ -0,0 +1,248 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-23 15:47:11,119 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-23 15:47:11,120 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(64001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-11): 12 x BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
(pooler): BertPooler(
|
41 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(activation): Tanh()
|
43 |
+
)
|
44 |
+
)
|
45 |
+
)
|
46 |
+
(locked_dropout): LockedDropout(p=0.5)
|
47 |
+
(linear): Linear(in_features=768, out_features=25, bias=True)
|
48 |
+
(loss_function): CrossEntropyLoss()
|
49 |
+
)"
|
50 |
+
2023-10-23 15:47:11,120 ----------------------------------------------------------------------------------------------------
|
51 |
+
2023-10-23 15:47:11,120 MultiCorpus: 1100 train + 206 dev + 240 test sentences
|
52 |
+
- NER_HIPE_2022 Corpus: 1100 train + 206 dev + 240 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/ajmc/de/with_doc_seperator
|
53 |
+
2023-10-23 15:47:11,120 ----------------------------------------------------------------------------------------------------
|
54 |
+
2023-10-23 15:47:11,120 Train: 1100 sentences
|
55 |
+
2023-10-23 15:47:11,120 (train_with_dev=False, train_with_test=False)
|
56 |
+
2023-10-23 15:47:11,121 ----------------------------------------------------------------------------------------------------
|
57 |
+
2023-10-23 15:47:11,121 Training Params:
|
58 |
+
2023-10-23 15:47:11,121 - learning_rate: "5e-05"
|
59 |
+
2023-10-23 15:47:11,121 - mini_batch_size: "8"
|
60 |
+
2023-10-23 15:47:11,121 - max_epochs: "10"
|
61 |
+
2023-10-23 15:47:11,121 - shuffle: "True"
|
62 |
+
2023-10-23 15:47:11,121 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-10-23 15:47:11,121 Plugins:
|
64 |
+
2023-10-23 15:47:11,121 - TensorboardLogger
|
65 |
+
2023-10-23 15:47:11,121 - LinearScheduler | warmup_fraction: '0.1'
|
66 |
+
2023-10-23 15:47:11,121 ----------------------------------------------------------------------------------------------------
|
67 |
+
2023-10-23 15:47:11,121 Final evaluation on model from best epoch (best-model.pt)
|
68 |
+
2023-10-23 15:47:11,121 - metric: "('micro avg', 'f1-score')"
|
69 |
+
2023-10-23 15:47:11,121 ----------------------------------------------------------------------------------------------------
|
70 |
+
2023-10-23 15:47:11,121 Computation:
|
71 |
+
2023-10-23 15:47:11,121 - compute on device: cuda:0
|
72 |
+
2023-10-23 15:47:11,121 - embedding storage: none
|
73 |
+
2023-10-23 15:47:11,121 ----------------------------------------------------------------------------------------------------
|
74 |
+
2023-10-23 15:47:11,121 Model training base path: "hmbench-ajmc/de-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4"
|
75 |
+
2023-10-23 15:47:11,121 ----------------------------------------------------------------------------------------------------
|
76 |
+
2023-10-23 15:47:11,121 ----------------------------------------------------------------------------------------------------
|
77 |
+
2023-10-23 15:47:11,121 Logging anything other than scalars to TensorBoard is currently not supported.
|
78 |
+
2023-10-23 15:47:11,830 epoch 1 - iter 13/138 - loss 3.11505708 - time (sec): 0.71 - samples/sec: 2973.30 - lr: 0.000004 - momentum: 0.000000
|
79 |
+
2023-10-23 15:47:12,567 epoch 1 - iter 26/138 - loss 2.46744691 - time (sec): 1.44 - samples/sec: 2948.36 - lr: 0.000009 - momentum: 0.000000
|
80 |
+
2023-10-23 15:47:13,294 epoch 1 - iter 39/138 - loss 2.00064272 - time (sec): 2.17 - samples/sec: 2848.83 - lr: 0.000014 - momentum: 0.000000
|
81 |
+
2023-10-23 15:47:14,059 epoch 1 - iter 52/138 - loss 1.65199002 - time (sec): 2.94 - samples/sec: 2947.01 - lr: 0.000018 - momentum: 0.000000
|
82 |
+
2023-10-23 15:47:14,778 epoch 1 - iter 65/138 - loss 1.48169540 - time (sec): 3.66 - samples/sec: 2901.54 - lr: 0.000023 - momentum: 0.000000
|
83 |
+
2023-10-23 15:47:15,519 epoch 1 - iter 78/138 - loss 1.29756776 - time (sec): 4.40 - samples/sec: 2920.72 - lr: 0.000028 - momentum: 0.000000
|
84 |
+
2023-10-23 15:47:16,270 epoch 1 - iter 91/138 - loss 1.16855120 - time (sec): 5.15 - samples/sec: 2865.24 - lr: 0.000033 - momentum: 0.000000
|
85 |
+
2023-10-23 15:47:17,053 epoch 1 - iter 104/138 - loss 1.03837897 - time (sec): 5.93 - samples/sec: 2921.34 - lr: 0.000037 - momentum: 0.000000
|
86 |
+
2023-10-23 15:47:17,867 epoch 1 - iter 117/138 - loss 0.94938763 - time (sec): 6.75 - samples/sec: 2886.32 - lr: 0.000042 - momentum: 0.000000
|
87 |
+
2023-10-23 15:47:18,654 epoch 1 - iter 130/138 - loss 0.88540734 - time (sec): 7.53 - samples/sec: 2878.25 - lr: 0.000047 - momentum: 0.000000
|
88 |
+
2023-10-23 15:47:19,132 ----------------------------------------------------------------------------------------------------
|
89 |
+
2023-10-23 15:47:19,132 EPOCH 1 done: loss 0.8523 - lr: 0.000047
|
90 |
+
2023-10-23 15:47:19,554 DEV : loss 0.2265705019235611 - f1-score (micro avg) 0.6643
|
91 |
+
2023-10-23 15:47:19,560 saving best model
|
92 |
+
2023-10-23 15:47:19,955 ----------------------------------------------------------------------------------------------------
|
93 |
+
2023-10-23 15:47:20,667 epoch 2 - iter 13/138 - loss 0.26476026 - time (sec): 0.71 - samples/sec: 2982.33 - lr: 0.000050 - momentum: 0.000000
|
94 |
+
2023-10-23 15:47:21,385 epoch 2 - iter 26/138 - loss 0.21464055 - time (sec): 1.43 - samples/sec: 3104.30 - lr: 0.000049 - momentum: 0.000000
|
95 |
+
2023-10-23 15:47:22,113 epoch 2 - iter 39/138 - loss 0.20326127 - time (sec): 2.16 - samples/sec: 3134.81 - lr: 0.000048 - momentum: 0.000000
|
96 |
+
2023-10-23 15:47:22,857 epoch 2 - iter 52/138 - loss 0.18189690 - time (sec): 2.90 - samples/sec: 3124.57 - lr: 0.000048 - momentum: 0.000000
|
97 |
+
2023-10-23 15:47:23,666 epoch 2 - iter 65/138 - loss 0.18181936 - time (sec): 3.71 - samples/sec: 3005.53 - lr: 0.000047 - momentum: 0.000000
|
98 |
+
2023-10-23 15:47:24,458 epoch 2 - iter 78/138 - loss 0.17939422 - time (sec): 4.50 - samples/sec: 2972.13 - lr: 0.000047 - momentum: 0.000000
|
99 |
+
2023-10-23 15:47:25,250 epoch 2 - iter 91/138 - loss 0.17730142 - time (sec): 5.29 - samples/sec: 2935.32 - lr: 0.000046 - momentum: 0.000000
|
100 |
+
2023-10-23 15:47:26,046 epoch 2 - iter 104/138 - loss 0.17262996 - time (sec): 6.09 - samples/sec: 2894.92 - lr: 0.000046 - momentum: 0.000000
|
101 |
+
2023-10-23 15:47:26,839 epoch 2 - iter 117/138 - loss 0.16894373 - time (sec): 6.88 - samples/sec: 2840.58 - lr: 0.000045 - momentum: 0.000000
|
102 |
+
2023-10-23 15:47:27,618 epoch 2 - iter 130/138 - loss 0.16407567 - time (sec): 7.66 - samples/sec: 2819.51 - lr: 0.000045 - momentum: 0.000000
|
103 |
+
2023-10-23 15:47:28,102 ----------------------------------------------------------------------------------------------------
|
104 |
+
2023-10-23 15:47:28,102 EPOCH 2 done: loss 0.1596 - lr: 0.000045
|
105 |
+
2023-10-23 15:47:28,638 DEV : loss 0.11940671503543854 - f1-score (micro avg) 0.8465
|
106 |
+
2023-10-23 15:47:28,644 saving best model
|
107 |
+
2023-10-23 15:47:29,202 ----------------------------------------------------------------------------------------------------
|
108 |
+
2023-10-23 15:47:30,003 epoch 3 - iter 13/138 - loss 0.07988993 - time (sec): 0.80 - samples/sec: 2593.24 - lr: 0.000044 - momentum: 0.000000
|
109 |
+
2023-10-23 15:47:30,798 epoch 3 - iter 26/138 - loss 0.10888248 - time (sec): 1.59 - samples/sec: 2556.50 - lr: 0.000043 - momentum: 0.000000
|
110 |
+
2023-10-23 15:47:31,608 epoch 3 - iter 39/138 - loss 0.09016497 - time (sec): 2.40 - samples/sec: 2621.42 - lr: 0.000043 - momentum: 0.000000
|
111 |
+
2023-10-23 15:47:32,396 epoch 3 - iter 52/138 - loss 0.08999953 - time (sec): 3.19 - samples/sec: 2617.65 - lr: 0.000042 - momentum: 0.000000
|
112 |
+
2023-10-23 15:47:33,173 epoch 3 - iter 65/138 - loss 0.09109642 - time (sec): 3.96 - samples/sec: 2592.58 - lr: 0.000042 - momentum: 0.000000
|
113 |
+
2023-10-23 15:47:33,952 epoch 3 - iter 78/138 - loss 0.08731252 - time (sec): 4.74 - samples/sec: 2642.90 - lr: 0.000041 - momentum: 0.000000
|
114 |
+
2023-10-23 15:47:34,766 epoch 3 - iter 91/138 - loss 0.09236665 - time (sec): 5.56 - samples/sec: 2646.20 - lr: 0.000041 - momentum: 0.000000
|
115 |
+
2023-10-23 15:47:35,556 epoch 3 - iter 104/138 - loss 0.08968405 - time (sec): 6.35 - samples/sec: 2661.88 - lr: 0.000040 - momentum: 0.000000
|
116 |
+
2023-10-23 15:47:36,367 epoch 3 - iter 117/138 - loss 0.09102394 - time (sec): 7.16 - samples/sec: 2676.05 - lr: 0.000040 - momentum: 0.000000
|
117 |
+
2023-10-23 15:47:37,174 epoch 3 - iter 130/138 - loss 0.09080745 - time (sec): 7.97 - samples/sec: 2709.68 - lr: 0.000039 - momentum: 0.000000
|
118 |
+
2023-10-23 15:47:37,664 ----------------------------------------------------------------------------------------------------
|
119 |
+
2023-10-23 15:47:37,664 EPOCH 3 done: loss 0.0903 - lr: 0.000039
|
120 |
+
2023-10-23 15:47:38,358 DEV : loss 0.1325010061264038 - f1-score (micro avg) 0.839
|
121 |
+
2023-10-23 15:47:38,364 ----------------------------------------------------------------------------------------------------
|
122 |
+
2023-10-23 15:47:39,107 epoch 4 - iter 13/138 - loss 0.04646751 - time (sec): 0.74 - samples/sec: 2994.83 - lr: 0.000038 - momentum: 0.000000
|
123 |
+
2023-10-23 15:47:39,891 epoch 4 - iter 26/138 - loss 0.05610819 - time (sec): 1.53 - samples/sec: 2739.53 - lr: 0.000038 - momentum: 0.000000
|
124 |
+
2023-10-23 15:47:40,684 epoch 4 - iter 39/138 - loss 0.05405158 - time (sec): 2.32 - samples/sec: 2691.38 - lr: 0.000037 - momentum: 0.000000
|
125 |
+
2023-10-23 15:47:41,500 epoch 4 - iter 52/138 - loss 0.05580227 - time (sec): 3.14 - samples/sec: 2655.31 - lr: 0.000037 - momentum: 0.000000
|
126 |
+
2023-10-23 15:47:42,296 epoch 4 - iter 65/138 - loss 0.04970762 - time (sec): 3.93 - samples/sec: 2609.10 - lr: 0.000036 - momentum: 0.000000
|
127 |
+
2023-10-23 15:47:43,110 epoch 4 - iter 78/138 - loss 0.05294991 - time (sec): 4.75 - samples/sec: 2629.20 - lr: 0.000036 - momentum: 0.000000
|
128 |
+
2023-10-23 15:47:43,916 epoch 4 - iter 91/138 - loss 0.05649414 - time (sec): 5.55 - samples/sec: 2658.90 - lr: 0.000035 - momentum: 0.000000
|
129 |
+
2023-10-23 15:47:44,734 epoch 4 - iter 104/138 - loss 0.05731326 - time (sec): 6.37 - samples/sec: 2672.85 - lr: 0.000035 - momentum: 0.000000
|
130 |
+
2023-10-23 15:47:45,535 epoch 4 - iter 117/138 - loss 0.05895584 - time (sec): 7.17 - samples/sec: 2691.66 - lr: 0.000034 - momentum: 0.000000
|
131 |
+
2023-10-23 15:47:46,328 epoch 4 - iter 130/138 - loss 0.06194870 - time (sec): 7.96 - samples/sec: 2686.50 - lr: 0.000034 - momentum: 0.000000
|
132 |
+
2023-10-23 15:47:46,822 ----------------------------------------------------------------------------------------------------
|
133 |
+
2023-10-23 15:47:46,822 EPOCH 4 done: loss 0.0612 - lr: 0.000034
|
134 |
+
2023-10-23 15:47:47,354 DEV : loss 0.12988846004009247 - f1-score (micro avg) 0.8554
|
135 |
+
2023-10-23 15:47:47,360 saving best model
|
136 |
+
2023-10-23 15:47:47,915 ----------------------------------------------------------------------------------------------------
|
137 |
+
2023-10-23 15:47:48,628 epoch 5 - iter 13/138 - loss 0.04927867 - time (sec): 0.71 - samples/sec: 2938.01 - lr: 0.000033 - momentum: 0.000000
|
138 |
+
2023-10-23 15:47:49,431 epoch 5 - iter 26/138 - loss 0.03675946 - time (sec): 1.51 - samples/sec: 2794.05 - lr: 0.000032 - momentum: 0.000000
|
139 |
+
2023-10-23 15:47:50,208 epoch 5 - iter 39/138 - loss 0.04209356 - time (sec): 2.29 - samples/sec: 2798.76 - lr: 0.000032 - momentum: 0.000000
|
140 |
+
2023-10-23 15:47:50,987 epoch 5 - iter 52/138 - loss 0.04151665 - time (sec): 3.07 - samples/sec: 2811.44 - lr: 0.000031 - momentum: 0.000000
|
141 |
+
2023-10-23 15:47:51,704 epoch 5 - iter 65/138 - loss 0.03815920 - time (sec): 3.78 - samples/sec: 2832.74 - lr: 0.000031 - momentum: 0.000000
|
142 |
+
2023-10-23 15:47:52,432 epoch 5 - iter 78/138 - loss 0.04408756 - time (sec): 4.51 - samples/sec: 2896.67 - lr: 0.000030 - momentum: 0.000000
|
143 |
+
2023-10-23 15:47:53,147 epoch 5 - iter 91/138 - loss 0.04668946 - time (sec): 5.23 - samples/sec: 2880.16 - lr: 0.000030 - momentum: 0.000000
|
144 |
+
2023-10-23 15:47:53,836 epoch 5 - iter 104/138 - loss 0.04823073 - time (sec): 5.92 - samples/sec: 2872.66 - lr: 0.000029 - momentum: 0.000000
|
145 |
+
2023-10-23 15:47:54,576 epoch 5 - iter 117/138 - loss 0.04762912 - time (sec): 6.66 - samples/sec: 2917.07 - lr: 0.000029 - momentum: 0.000000
|
146 |
+
2023-10-23 15:47:55,286 epoch 5 - iter 130/138 - loss 0.04742132 - time (sec): 7.37 - samples/sec: 2933.92 - lr: 0.000028 - momentum: 0.000000
|
147 |
+
2023-10-23 15:47:55,736 ----------------------------------------------------------------------------------------------------
|
148 |
+
2023-10-23 15:47:55,736 EPOCH 5 done: loss 0.0454 - lr: 0.000028
|
149 |
+
2023-10-23 15:47:56,268 DEV : loss 0.15986910462379456 - f1-score (micro avg) 0.8606
|
150 |
+
2023-10-23 15:47:56,274 saving best model
|
151 |
+
2023-10-23 15:47:56,818 ----------------------------------------------------------------------------------------------------
|
152 |
+
2023-10-23 15:47:57,521 epoch 6 - iter 13/138 - loss 0.04161822 - time (sec): 0.70 - samples/sec: 3012.41 - lr: 0.000027 - momentum: 0.000000
|
153 |
+
2023-10-23 15:47:58,239 epoch 6 - iter 26/138 - loss 0.05124527 - time (sec): 1.42 - samples/sec: 3101.86 - lr: 0.000027 - momentum: 0.000000
|
154 |
+
2023-10-23 15:47:58,975 epoch 6 - iter 39/138 - loss 0.04212149 - time (sec): 2.15 - samples/sec: 3019.44 - lr: 0.000026 - momentum: 0.000000
|
155 |
+
2023-10-23 15:47:59,690 epoch 6 - iter 52/138 - loss 0.03547030 - time (sec): 2.87 - samples/sec: 2992.94 - lr: 0.000026 - momentum: 0.000000
|
156 |
+
2023-10-23 15:48:00,386 epoch 6 - iter 65/138 - loss 0.03220072 - time (sec): 3.56 - samples/sec: 3004.40 - lr: 0.000025 - momentum: 0.000000
|
157 |
+
2023-10-23 15:48:01,097 epoch 6 - iter 78/138 - loss 0.02840167 - time (sec): 4.27 - samples/sec: 3103.60 - lr: 0.000025 - momentum: 0.000000
|
158 |
+
2023-10-23 15:48:01,795 epoch 6 - iter 91/138 - loss 0.02684088 - time (sec): 4.97 - samples/sec: 3106.79 - lr: 0.000024 - momentum: 0.000000
|
159 |
+
2023-10-23 15:48:02,516 epoch 6 - iter 104/138 - loss 0.03197223 - time (sec): 5.69 - samples/sec: 3058.56 - lr: 0.000024 - momentum: 0.000000
|
160 |
+
2023-10-23 15:48:03,217 epoch 6 - iter 117/138 - loss 0.03171220 - time (sec): 6.39 - samples/sec: 3068.40 - lr: 0.000023 - momentum: 0.000000
|
161 |
+
2023-10-23 15:48:03,901 epoch 6 - iter 130/138 - loss 0.03129985 - time (sec): 7.08 - samples/sec: 3033.14 - lr: 0.000023 - momentum: 0.000000
|
162 |
+
2023-10-23 15:48:04,322 ----------------------------------------------------------------------------------------------------
|
163 |
+
2023-10-23 15:48:04,323 EPOCH 6 done: loss 0.0310 - lr: 0.000023
|
164 |
+
2023-10-23 15:48:04,853 DEV : loss 0.1651483029127121 - f1-score (micro avg) 0.8617
|
165 |
+
2023-10-23 15:48:04,859 saving best model
|
166 |
+
2023-10-23 15:48:05,386 ----------------------------------------------------------------------------------------------------
|
167 |
+
2023-10-23 15:48:06,114 epoch 7 - iter 13/138 - loss 0.00533927 - time (sec): 0.72 - samples/sec: 2942.35 - lr: 0.000022 - momentum: 0.000000
|
168 |
+
2023-10-23 15:48:06,817 epoch 7 - iter 26/138 - loss 0.01162164 - time (sec): 1.43 - samples/sec: 3030.67 - lr: 0.000021 - momentum: 0.000000
|
169 |
+
2023-10-23 15:48:07,522 epoch 7 - iter 39/138 - loss 0.02842342 - time (sec): 2.13 - samples/sec: 3046.05 - lr: 0.000021 - momentum: 0.000000
|
170 |
+
2023-10-23 15:48:08,284 epoch 7 - iter 52/138 - loss 0.02496210 - time (sec): 2.89 - samples/sec: 3099.66 - lr: 0.000020 - momentum: 0.000000
|
171 |
+
2023-10-23 15:48:09,011 epoch 7 - iter 65/138 - loss 0.02352598 - time (sec): 3.62 - samples/sec: 3028.85 - lr: 0.000020 - momentum: 0.000000
|
172 |
+
2023-10-23 15:48:09,752 epoch 7 - iter 78/138 - loss 0.02146960 - time (sec): 4.36 - samples/sec: 3021.91 - lr: 0.000019 - momentum: 0.000000
|
173 |
+
2023-10-23 15:48:10,477 epoch 7 - iter 91/138 - loss 0.02311809 - time (sec): 5.09 - samples/sec: 2983.84 - lr: 0.000019 - momentum: 0.000000
|
174 |
+
2023-10-23 15:48:11,224 epoch 7 - iter 104/138 - loss 0.02189737 - time (sec): 5.83 - samples/sec: 2999.38 - lr: 0.000018 - momentum: 0.000000
|
175 |
+
2023-10-23 15:48:11,967 epoch 7 - iter 117/138 - loss 0.02004301 - time (sec): 6.58 - samples/sec: 2995.24 - lr: 0.000018 - momentum: 0.000000
|
176 |
+
2023-10-23 15:48:12,695 epoch 7 - iter 130/138 - loss 0.01962060 - time (sec): 7.30 - samples/sec: 2966.80 - lr: 0.000017 - momentum: 0.000000
|
177 |
+
2023-10-23 15:48:13,127 ----------------------------------------------------------------------------------------------------
|
178 |
+
2023-10-23 15:48:13,127 EPOCH 7 done: loss 0.0200 - lr: 0.000017
|
179 |
+
2023-10-23 15:48:13,671 DEV : loss 0.1657860279083252 - f1-score (micro avg) 0.8644
|
180 |
+
2023-10-23 15:48:13,678 saving best model
|
181 |
+
2023-10-23 15:48:14,230 ----------------------------------------------------------------------------------------------------
|
182 |
+
2023-10-23 15:48:14,928 epoch 8 - iter 13/138 - loss 0.00589471 - time (sec): 0.69 - samples/sec: 2934.05 - lr: 0.000016 - momentum: 0.000000
|
183 |
+
2023-10-23 15:48:15,622 epoch 8 - iter 26/138 - loss 0.00765983 - time (sec): 1.39 - samples/sec: 3195.34 - lr: 0.000016 - momentum: 0.000000
|
184 |
+
2023-10-23 15:48:16,335 epoch 8 - iter 39/138 - loss 0.00720803 - time (sec): 2.10 - samples/sec: 3132.26 - lr: 0.000015 - momentum: 0.000000
|
185 |
+
2023-10-23 15:48:17,042 epoch 8 - iter 52/138 - loss 0.01376241 - time (sec): 2.81 - samples/sec: 3114.13 - lr: 0.000015 - momentum: 0.000000
|
186 |
+
2023-10-23 15:48:17,757 epoch 8 - iter 65/138 - loss 0.01729594 - time (sec): 3.52 - samples/sec: 3040.45 - lr: 0.000014 - momentum: 0.000000
|
187 |
+
2023-10-23 15:48:18,467 epoch 8 - iter 78/138 - loss 0.01653361 - time (sec): 4.23 - samples/sec: 3061.06 - lr: 0.000014 - momentum: 0.000000
|
188 |
+
2023-10-23 15:48:19,184 epoch 8 - iter 91/138 - loss 0.01734789 - time (sec): 4.95 - samples/sec: 3064.51 - lr: 0.000013 - momentum: 0.000000
|
189 |
+
2023-10-23 15:48:19,884 epoch 8 - iter 104/138 - loss 0.01590998 - time (sec): 5.65 - samples/sec: 3029.29 - lr: 0.000013 - momentum: 0.000000
|
190 |
+
2023-10-23 15:48:20,592 epoch 8 - iter 117/138 - loss 0.01576961 - time (sec): 6.36 - samples/sec: 3025.51 - lr: 0.000012 - momentum: 0.000000
|
191 |
+
2023-10-23 15:48:21,291 epoch 8 - iter 130/138 - loss 0.01454689 - time (sec): 7.06 - samples/sec: 3046.09 - lr: 0.000012 - momentum: 0.000000
|
192 |
+
2023-10-23 15:48:21,722 ----------------------------------------------------------------------------------------------------
|
193 |
+
2023-10-23 15:48:21,722 EPOCH 8 done: loss 0.0141 - lr: 0.000012
|
194 |
+
2023-10-23 15:48:22,253 DEV : loss 0.1713750660419464 - f1-score (micro avg) 0.8809
|
195 |
+
2023-10-23 15:48:22,259 saving best model
|
196 |
+
2023-10-23 15:48:22,785 ----------------------------------------------------------------------------------------------------
|
197 |
+
2023-10-23 15:48:23,573 epoch 9 - iter 13/138 - loss 0.00064167 - time (sec): 0.78 - samples/sec: 2662.24 - lr: 0.000011 - momentum: 0.000000
|
198 |
+
2023-10-23 15:48:24,379 epoch 9 - iter 26/138 - loss 0.00090612 - time (sec): 1.59 - samples/sec: 2591.74 - lr: 0.000010 - momentum: 0.000000
|
199 |
+
2023-10-23 15:48:25,156 epoch 9 - iter 39/138 - loss 0.00356920 - time (sec): 2.37 - samples/sec: 2661.44 - lr: 0.000010 - momentum: 0.000000
|
200 |
+
2023-10-23 15:48:25,905 epoch 9 - iter 52/138 - loss 0.00694166 - time (sec): 3.12 - samples/sec: 2703.28 - lr: 0.000009 - momentum: 0.000000
|
201 |
+
2023-10-23 15:48:26,662 epoch 9 - iter 65/138 - loss 0.00634685 - time (sec): 3.87 - samples/sec: 2750.75 - lr: 0.000009 - momentum: 0.000000
|
202 |
+
2023-10-23 15:48:27,371 epoch 9 - iter 78/138 - loss 0.00630311 - time (sec): 4.58 - samples/sec: 2811.30 - lr: 0.000008 - momentum: 0.000000
|
203 |
+
2023-10-23 15:48:28,085 epoch 9 - iter 91/138 - loss 0.00702119 - time (sec): 5.29 - samples/sec: 2857.61 - lr: 0.000008 - momentum: 0.000000
|
204 |
+
2023-10-23 15:48:28,793 epoch 9 - iter 104/138 - loss 0.00633296 - time (sec): 6.00 - samples/sec: 2881.34 - lr: 0.000007 - momentum: 0.000000
|
205 |
+
2023-10-23 15:48:29,494 epoch 9 - iter 117/138 - loss 0.00628241 - time (sec): 6.70 - samples/sec: 2893.94 - lr: 0.000007 - momentum: 0.000000
|
206 |
+
2023-10-23 15:48:30,188 epoch 9 - iter 130/138 - loss 0.00742424 - time (sec): 7.40 - samples/sec: 2912.60 - lr: 0.000006 - momentum: 0.000000
|
207 |
+
2023-10-23 15:48:30,618 ----------------------------------------------------------------------------------------------------
|
208 |
+
2023-10-23 15:48:30,619 EPOCH 9 done: loss 0.0081 - lr: 0.000006
|
209 |
+
2023-10-23 15:48:31,149 DEV : loss 0.168824702501297 - f1-score (micro avg) 0.8878
|
210 |
+
2023-10-23 15:48:31,155 saving best model
|
211 |
+
2023-10-23 15:48:31,685 ----------------------------------------------------------------------------------------------------
|
212 |
+
2023-10-23 15:48:32,447 epoch 10 - iter 13/138 - loss 0.00118623 - time (sec): 0.76 - samples/sec: 2828.23 - lr: 0.000005 - momentum: 0.000000
|
213 |
+
2023-10-23 15:48:33,213 epoch 10 - iter 26/138 - loss 0.00065035 - time (sec): 1.53 - samples/sec: 2780.14 - lr: 0.000005 - momentum: 0.000000
|
214 |
+
2023-10-23 15:48:33,980 epoch 10 - iter 39/138 - loss 0.00146356 - time (sec): 2.29 - samples/sec: 2887.96 - lr: 0.000004 - momentum: 0.000000
|
215 |
+
2023-10-23 15:48:34,716 epoch 10 - iter 52/138 - loss 0.00148726 - time (sec): 3.03 - samples/sec: 2858.71 - lr: 0.000004 - momentum: 0.000000
|
216 |
+
2023-10-23 15:48:35,468 epoch 10 - iter 65/138 - loss 0.00601163 - time (sec): 3.78 - samples/sec: 2811.73 - lr: 0.000003 - momentum: 0.000000
|
217 |
+
2023-10-23 15:48:36,217 epoch 10 - iter 78/138 - loss 0.00550576 - time (sec): 4.53 - samples/sec: 2841.53 - lr: 0.000003 - momentum: 0.000000
|
218 |
+
2023-10-23 15:48:36,937 epoch 10 - iter 91/138 - loss 0.00571920 - time (sec): 5.25 - samples/sec: 2850.58 - lr: 0.000002 - momentum: 0.000000
|
219 |
+
2023-10-23 15:48:37,659 epoch 10 - iter 104/138 - loss 0.00554833 - time (sec): 5.97 - samples/sec: 2870.23 - lr: 0.000002 - momentum: 0.000000
|
220 |
+
2023-10-23 15:48:38,411 epoch 10 - iter 117/138 - loss 0.00516556 - time (sec): 6.72 - samples/sec: 2864.43 - lr: 0.000001 - momentum: 0.000000
|
221 |
+
2023-10-23 15:48:39,166 epoch 10 - iter 130/138 - loss 0.00497822 - time (sec): 7.48 - samples/sec: 2875.52 - lr: 0.000000 - momentum: 0.000000
|
222 |
+
2023-10-23 15:48:39,615 ----------------------------------------------------------------------------------------------------
|
223 |
+
2023-10-23 15:48:39,615 EPOCH 10 done: loss 0.0052 - lr: 0.000000
|
224 |
+
2023-10-23 15:48:40,154 DEV : loss 0.16836421191692352 - f1-score (micro avg) 0.8892
|
225 |
+
2023-10-23 15:48:40,160 saving best model
|
226 |
+
2023-10-23 15:48:41,107 ----------------------------------------------------------------------------------------------------
|
227 |
+
2023-10-23 15:48:41,109 Loading model from best epoch ...
|
228 |
+
2023-10-23 15:48:42,759 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
|
229 |
+
2023-10-23 15:48:43,434
|
230 |
+
Results:
|
231 |
+
- F-score (micro) 0.9098
|
232 |
+
- F-score (macro) 0.8239
|
233 |
+
- Accuracy 0.8426
|
234 |
+
|
235 |
+
By class:
|
236 |
+
precision recall f1-score support
|
237 |
+
|
238 |
+
scope 0.8883 0.9034 0.8958 176
|
239 |
+
pers 0.9840 0.9609 0.9723 128
|
240 |
+
work 0.8514 0.8514 0.8514 74
|
241 |
+
loc 0.3333 0.5000 0.4000 2
|
242 |
+
object 1.0000 1.0000 1.0000 2
|
243 |
+
|
244 |
+
micro avg 0.9086 0.9110 0.9098 382
|
245 |
+
macro avg 0.8114 0.8431 0.8239 382
|
246 |
+
weighted avg 0.9109 0.9110 0.9108 382
|
247 |
+
|
248 |
+
2023-10-23 15:48:43,435 ----------------------------------------------------------------------------------------------------
|