File size: 24,124 Bytes
7fbad1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
2023-10-18 14:42:40,217 ----------------------------------------------------------------------------------------------------
2023-10-18 14:42:40,217 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(32001, 128)
(position_embeddings): Embedding(512, 128)
(token_type_embeddings): Embedding(2, 128)
(LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
(0-1): 2 x BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=128, out_features=128, bias=True)
(key): Linear(in_features=128, out_features=128, bias=True)
(value): Linear(in_features=128, out_features=128, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=128, out_features=128, bias=True)
(LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=128, out_features=512, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=512, out_features=128, bias=True)
(LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): BertPooler(
(dense): Linear(in_features=128, out_features=128, bias=True)
(activation): Tanh()
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=128, out_features=25, bias=True)
(loss_function): CrossEntropyLoss()
)"
2023-10-18 14:42:40,217 ----------------------------------------------------------------------------------------------------
2023-10-18 14:42:40,217 MultiCorpus: 1100 train + 206 dev + 240 test sentences
- NER_HIPE_2022 Corpus: 1100 train + 206 dev + 240 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/ajmc/de/with_doc_seperator
2023-10-18 14:42:40,217 ----------------------------------------------------------------------------------------------------
2023-10-18 14:42:40,217 Train: 1100 sentences
2023-10-18 14:42:40,217 (train_with_dev=False, train_with_test=False)
2023-10-18 14:42:40,217 ----------------------------------------------------------------------------------------------------
2023-10-18 14:42:40,217 Training Params:
2023-10-18 14:42:40,217 - learning_rate: "3e-05"
2023-10-18 14:42:40,217 - mini_batch_size: "4"
2023-10-18 14:42:40,217 - max_epochs: "10"
2023-10-18 14:42:40,217 - shuffle: "True"
2023-10-18 14:42:40,217 ----------------------------------------------------------------------------------------------------
2023-10-18 14:42:40,217 Plugins:
2023-10-18 14:42:40,217 - TensorboardLogger
2023-10-18 14:42:40,217 - LinearScheduler | warmup_fraction: '0.1'
2023-10-18 14:42:40,218 ----------------------------------------------------------------------------------------------------
2023-10-18 14:42:40,218 Final evaluation on model from best epoch (best-model.pt)
2023-10-18 14:42:40,218 - metric: "('micro avg', 'f1-score')"
2023-10-18 14:42:40,218 ----------------------------------------------------------------------------------------------------
2023-10-18 14:42:40,218 Computation:
2023-10-18 14:42:40,218 - compute on device: cuda:0
2023-10-18 14:42:40,218 - embedding storage: none
2023-10-18 14:42:40,218 ----------------------------------------------------------------------------------------------------
2023-10-18 14:42:40,218 Model training base path: "hmbench-ajmc/de-dbmdz/bert-tiny-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4"
2023-10-18 14:42:40,218 ----------------------------------------------------------------------------------------------------
2023-10-18 14:42:40,218 ----------------------------------------------------------------------------------------------------
2023-10-18 14:42:40,218 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-18 14:42:40,625 epoch 1 - iter 27/275 - loss 4.04291065 - time (sec): 0.41 - samples/sec: 4876.59 - lr: 0.000003 - momentum: 0.000000
2023-10-18 14:42:41,036 epoch 1 - iter 54/275 - loss 3.99046555 - time (sec): 0.82 - samples/sec: 5295.40 - lr: 0.000006 - momentum: 0.000000
2023-10-18 14:42:41,450 epoch 1 - iter 81/275 - loss 3.88300995 - time (sec): 1.23 - samples/sec: 5217.03 - lr: 0.000009 - momentum: 0.000000
2023-10-18 14:42:41,839 epoch 1 - iter 108/275 - loss 3.72596285 - time (sec): 1.62 - samples/sec: 5451.17 - lr: 0.000012 - momentum: 0.000000
2023-10-18 14:42:42,204 epoch 1 - iter 135/275 - loss 3.59012547 - time (sec): 1.99 - samples/sec: 5587.39 - lr: 0.000015 - momentum: 0.000000
2023-10-18 14:42:42,567 epoch 1 - iter 162/275 - loss 3.42139254 - time (sec): 2.35 - samples/sec: 5723.76 - lr: 0.000018 - momentum: 0.000000
2023-10-18 14:42:42,940 epoch 1 - iter 189/275 - loss 3.22434273 - time (sec): 2.72 - samples/sec: 5769.38 - lr: 0.000021 - momentum: 0.000000
2023-10-18 14:42:43,317 epoch 1 - iter 216/275 - loss 3.00442121 - time (sec): 3.10 - samples/sec: 5893.76 - lr: 0.000023 - momentum: 0.000000
2023-10-18 14:42:43,695 epoch 1 - iter 243/275 - loss 2.83483712 - time (sec): 3.48 - samples/sec: 5821.97 - lr: 0.000026 - momentum: 0.000000
2023-10-18 14:42:44,062 epoch 1 - iter 270/275 - loss 2.67508372 - time (sec): 3.84 - samples/sec: 5835.49 - lr: 0.000029 - momentum: 0.000000
2023-10-18 14:42:44,125 ----------------------------------------------------------------------------------------------------
2023-10-18 14:42:44,125 EPOCH 1 done: loss 2.6478 - lr: 0.000029
2023-10-18 14:42:44,372 DEV : loss 0.9118794202804565 - f1-score (micro avg) 0.0
2023-10-18 14:42:44,376 ----------------------------------------------------------------------------------------------------
2023-10-18 14:42:44,748 epoch 2 - iter 27/275 - loss 0.87662447 - time (sec): 0.37 - samples/sec: 6845.47 - lr: 0.000030 - momentum: 0.000000
2023-10-18 14:42:45,110 epoch 2 - iter 54/275 - loss 0.91374560 - time (sec): 0.73 - samples/sec: 6393.62 - lr: 0.000029 - momentum: 0.000000
2023-10-18 14:42:45,483 epoch 2 - iter 81/275 - loss 0.95889295 - time (sec): 1.11 - samples/sec: 6284.21 - lr: 0.000029 - momentum: 0.000000
2023-10-18 14:42:45,845 epoch 2 - iter 108/275 - loss 0.98239975 - time (sec): 1.47 - samples/sec: 6046.67 - lr: 0.000029 - momentum: 0.000000
2023-10-18 14:42:46,212 epoch 2 - iter 135/275 - loss 0.96439524 - time (sec): 1.84 - samples/sec: 5984.52 - lr: 0.000028 - momentum: 0.000000
2023-10-18 14:42:46,584 epoch 2 - iter 162/275 - loss 0.95106604 - time (sec): 2.21 - samples/sec: 6042.69 - lr: 0.000028 - momentum: 0.000000
2023-10-18 14:42:46,944 epoch 2 - iter 189/275 - loss 0.94723193 - time (sec): 2.57 - samples/sec: 5948.24 - lr: 0.000028 - momentum: 0.000000
2023-10-18 14:42:47,317 epoch 2 - iter 216/275 - loss 0.94445831 - time (sec): 2.94 - samples/sec: 6021.22 - lr: 0.000027 - momentum: 0.000000
2023-10-18 14:42:47,685 epoch 2 - iter 243/275 - loss 0.93548787 - time (sec): 3.31 - samples/sec: 6070.65 - lr: 0.000027 - momentum: 0.000000
2023-10-18 14:42:48,054 epoch 2 - iter 270/275 - loss 0.91241355 - time (sec): 3.68 - samples/sec: 6096.45 - lr: 0.000027 - momentum: 0.000000
2023-10-18 14:42:48,125 ----------------------------------------------------------------------------------------------------
2023-10-18 14:42:48,125 EPOCH 2 done: loss 0.9173 - lr: 0.000027
2023-10-18 14:42:48,490 DEV : loss 0.7475361227989197 - f1-score (micro avg) 0.0
2023-10-18 14:42:48,496 ----------------------------------------------------------------------------------------------------
2023-10-18 14:42:48,902 epoch 3 - iter 27/275 - loss 0.84635988 - time (sec): 0.41 - samples/sec: 5704.90 - lr: 0.000026 - momentum: 0.000000
2023-10-18 14:42:49,321 epoch 3 - iter 54/275 - loss 0.86258624 - time (sec): 0.82 - samples/sec: 5841.02 - lr: 0.000026 - momentum: 0.000000
2023-10-18 14:42:49,724 epoch 3 - iter 81/275 - loss 0.82020005 - time (sec): 1.23 - samples/sec: 5773.89 - lr: 0.000026 - momentum: 0.000000
2023-10-18 14:42:50,139 epoch 3 - iter 108/275 - loss 0.77919393 - time (sec): 1.64 - samples/sec: 5707.72 - lr: 0.000025 - momentum: 0.000000
2023-10-18 14:42:50,534 epoch 3 - iter 135/275 - loss 0.76811019 - time (sec): 2.04 - samples/sec: 5700.03 - lr: 0.000025 - momentum: 0.000000
2023-10-18 14:42:50,947 epoch 3 - iter 162/275 - loss 0.74306539 - time (sec): 2.45 - samples/sec: 5612.75 - lr: 0.000025 - momentum: 0.000000
2023-10-18 14:42:51,356 epoch 3 - iter 189/275 - loss 0.73905325 - time (sec): 2.86 - samples/sec: 5540.48 - lr: 0.000024 - momentum: 0.000000
2023-10-18 14:42:51,754 epoch 3 - iter 216/275 - loss 0.73527931 - time (sec): 3.26 - samples/sec: 5553.83 - lr: 0.000024 - momentum: 0.000000
2023-10-18 14:42:52,169 epoch 3 - iter 243/275 - loss 0.72744124 - time (sec): 3.67 - samples/sec: 5554.37 - lr: 0.000024 - momentum: 0.000000
2023-10-18 14:42:52,563 epoch 3 - iter 270/275 - loss 0.73156120 - time (sec): 4.07 - samples/sec: 5514.56 - lr: 0.000023 - momentum: 0.000000
2023-10-18 14:42:52,639 ----------------------------------------------------------------------------------------------------
2023-10-18 14:42:52,639 EPOCH 3 done: loss 0.7276 - lr: 0.000023
2023-10-18 14:42:52,997 DEV : loss 0.5736738443374634 - f1-score (micro avg) 0.0998
2023-10-18 14:42:53,001 saving best model
2023-10-18 14:42:53,036 ----------------------------------------------------------------------------------------------------
2023-10-18 14:42:53,436 epoch 4 - iter 27/275 - loss 0.66304226 - time (sec): 0.40 - samples/sec: 5203.57 - lr: 0.000023 - momentum: 0.000000
2023-10-18 14:42:53,839 epoch 4 - iter 54/275 - loss 0.67760661 - time (sec): 0.80 - samples/sec: 5109.62 - lr: 0.000023 - momentum: 0.000000
2023-10-18 14:42:54,238 epoch 4 - iter 81/275 - loss 0.67789303 - time (sec): 1.20 - samples/sec: 5267.91 - lr: 0.000022 - momentum: 0.000000
2023-10-18 14:42:54,648 epoch 4 - iter 108/275 - loss 0.67021179 - time (sec): 1.61 - samples/sec: 5332.48 - lr: 0.000022 - momentum: 0.000000
2023-10-18 14:42:55,055 epoch 4 - iter 135/275 - loss 0.65333439 - time (sec): 2.02 - samples/sec: 5361.47 - lr: 0.000022 - momentum: 0.000000
2023-10-18 14:42:55,468 epoch 4 - iter 162/275 - loss 0.65800262 - time (sec): 2.43 - samples/sec: 5419.86 - lr: 0.000021 - momentum: 0.000000
2023-10-18 14:42:55,871 epoch 4 - iter 189/275 - loss 0.65164776 - time (sec): 2.83 - samples/sec: 5427.11 - lr: 0.000021 - momentum: 0.000000
2023-10-18 14:42:56,277 epoch 4 - iter 216/275 - loss 0.64308123 - time (sec): 3.24 - samples/sec: 5493.28 - lr: 0.000021 - momentum: 0.000000
2023-10-18 14:42:56,700 epoch 4 - iter 243/275 - loss 0.62933789 - time (sec): 3.66 - samples/sec: 5518.39 - lr: 0.000020 - momentum: 0.000000
2023-10-18 14:42:57,100 epoch 4 - iter 270/275 - loss 0.62240563 - time (sec): 4.06 - samples/sec: 5504.32 - lr: 0.000020 - momentum: 0.000000
2023-10-18 14:42:57,175 ----------------------------------------------------------------------------------------------------
2023-10-18 14:42:57,175 EPOCH 4 done: loss 0.6153 - lr: 0.000020
2023-10-18 14:42:57,655 DEV : loss 0.4884113371372223 - f1-score (micro avg) 0.2163
2023-10-18 14:42:57,659 saving best model
2023-10-18 14:42:57,700 ----------------------------------------------------------------------------------------------------
2023-10-18 14:42:58,108 epoch 5 - iter 27/275 - loss 0.57991470 - time (sec): 0.41 - samples/sec: 5953.53 - lr: 0.000020 - momentum: 0.000000
2023-10-18 14:42:58,511 epoch 5 - iter 54/275 - loss 0.53287747 - time (sec): 0.81 - samples/sec: 5885.03 - lr: 0.000019 - momentum: 0.000000
2023-10-18 14:42:58,934 epoch 5 - iter 81/275 - loss 0.52636296 - time (sec): 1.23 - samples/sec: 5630.94 - lr: 0.000019 - momentum: 0.000000
2023-10-18 14:42:59,347 epoch 5 - iter 108/275 - loss 0.54229407 - time (sec): 1.65 - samples/sec: 5617.38 - lr: 0.000019 - momentum: 0.000000
2023-10-18 14:42:59,771 epoch 5 - iter 135/275 - loss 0.53641215 - time (sec): 2.07 - samples/sec: 5556.48 - lr: 0.000018 - momentum: 0.000000
2023-10-18 14:43:00,171 epoch 5 - iter 162/275 - loss 0.54184928 - time (sec): 2.47 - samples/sec: 5497.97 - lr: 0.000018 - momentum: 0.000000
2023-10-18 14:43:00,583 epoch 5 - iter 189/275 - loss 0.54976097 - time (sec): 2.88 - samples/sec: 5537.77 - lr: 0.000018 - momentum: 0.000000
2023-10-18 14:43:00,985 epoch 5 - iter 216/275 - loss 0.54676931 - time (sec): 3.28 - samples/sec: 5481.02 - lr: 0.000017 - momentum: 0.000000
2023-10-18 14:43:01,389 epoch 5 - iter 243/275 - loss 0.53924318 - time (sec): 3.69 - samples/sec: 5420.89 - lr: 0.000017 - momentum: 0.000000
2023-10-18 14:43:01,804 epoch 5 - iter 270/275 - loss 0.53859676 - time (sec): 4.10 - samples/sec: 5448.37 - lr: 0.000017 - momentum: 0.000000
2023-10-18 14:43:01,878 ----------------------------------------------------------------------------------------------------
2023-10-18 14:43:01,878 EPOCH 5 done: loss 0.5378 - lr: 0.000017
2023-10-18 14:43:02,242 DEV : loss 0.4137643575668335 - f1-score (micro avg) 0.3669
2023-10-18 14:43:02,246 saving best model
2023-10-18 14:43:02,279 ----------------------------------------------------------------------------------------------------
2023-10-18 14:43:02,688 epoch 6 - iter 27/275 - loss 0.50724664 - time (sec): 0.41 - samples/sec: 5132.05 - lr: 0.000016 - momentum: 0.000000
2023-10-18 14:43:03,089 epoch 6 - iter 54/275 - loss 0.49264158 - time (sec): 0.81 - samples/sec: 5192.29 - lr: 0.000016 - momentum: 0.000000
2023-10-18 14:43:03,494 epoch 6 - iter 81/275 - loss 0.48482614 - time (sec): 1.21 - samples/sec: 5061.78 - lr: 0.000016 - momentum: 0.000000
2023-10-18 14:43:03,914 epoch 6 - iter 108/275 - loss 0.48640583 - time (sec): 1.63 - samples/sec: 5233.22 - lr: 0.000015 - momentum: 0.000000
2023-10-18 14:43:04,315 epoch 6 - iter 135/275 - loss 0.49124330 - time (sec): 2.04 - samples/sec: 5313.77 - lr: 0.000015 - momentum: 0.000000
2023-10-18 14:43:04,734 epoch 6 - iter 162/275 - loss 0.49211512 - time (sec): 2.45 - samples/sec: 5412.89 - lr: 0.000015 - momentum: 0.000000
2023-10-18 14:43:05,139 epoch 6 - iter 189/275 - loss 0.48077587 - time (sec): 2.86 - samples/sec: 5433.05 - lr: 0.000014 - momentum: 0.000000
2023-10-18 14:43:05,534 epoch 6 - iter 216/275 - loss 0.48715522 - time (sec): 3.25 - samples/sec: 5387.09 - lr: 0.000014 - momentum: 0.000000
2023-10-18 14:43:05,942 epoch 6 - iter 243/275 - loss 0.50096569 - time (sec): 3.66 - samples/sec: 5386.51 - lr: 0.000014 - momentum: 0.000000
2023-10-18 14:43:06,355 epoch 6 - iter 270/275 - loss 0.49391955 - time (sec): 4.08 - samples/sec: 5466.99 - lr: 0.000013 - momentum: 0.000000
2023-10-18 14:43:06,438 ----------------------------------------------------------------------------------------------------
2023-10-18 14:43:06,438 EPOCH 6 done: loss 0.4934 - lr: 0.000013
2023-10-18 14:43:06,811 DEV : loss 0.38504037261009216 - f1-score (micro avg) 0.4258
2023-10-18 14:43:06,816 saving best model
2023-10-18 14:43:06,850 ----------------------------------------------------------------------------------------------------
2023-10-18 14:43:07,252 epoch 7 - iter 27/275 - loss 0.54413041 - time (sec): 0.40 - samples/sec: 4764.45 - lr: 0.000013 - momentum: 0.000000
2023-10-18 14:43:07,667 epoch 7 - iter 54/275 - loss 0.50300859 - time (sec): 0.82 - samples/sec: 5186.24 - lr: 0.000013 - momentum: 0.000000
2023-10-18 14:43:08,091 epoch 7 - iter 81/275 - loss 0.46386285 - time (sec): 1.24 - samples/sec: 5448.61 - lr: 0.000012 - momentum: 0.000000
2023-10-18 14:43:08,495 epoch 7 - iter 108/275 - loss 0.47033759 - time (sec): 1.65 - samples/sec: 5491.03 - lr: 0.000012 - momentum: 0.000000
2023-10-18 14:43:08,907 epoch 7 - iter 135/275 - loss 0.47671658 - time (sec): 2.06 - samples/sec: 5404.26 - lr: 0.000012 - momentum: 0.000000
2023-10-18 14:43:09,315 epoch 7 - iter 162/275 - loss 0.47678839 - time (sec): 2.46 - samples/sec: 5373.05 - lr: 0.000011 - momentum: 0.000000
2023-10-18 14:43:09,737 epoch 7 - iter 189/275 - loss 0.47287308 - time (sec): 2.89 - samples/sec: 5432.45 - lr: 0.000011 - momentum: 0.000000
2023-10-18 14:43:10,149 epoch 7 - iter 216/275 - loss 0.47324651 - time (sec): 3.30 - samples/sec: 5403.72 - lr: 0.000011 - momentum: 0.000000
2023-10-18 14:43:10,558 epoch 7 - iter 243/275 - loss 0.47351055 - time (sec): 3.71 - samples/sec: 5457.27 - lr: 0.000010 - momentum: 0.000000
2023-10-18 14:43:10,974 epoch 7 - iter 270/275 - loss 0.46992356 - time (sec): 4.12 - samples/sec: 5429.40 - lr: 0.000010 - momentum: 0.000000
2023-10-18 14:43:11,045 ----------------------------------------------------------------------------------------------------
2023-10-18 14:43:11,045 EPOCH 7 done: loss 0.4690 - lr: 0.000010
2023-10-18 14:43:11,424 DEV : loss 0.3652515113353729 - f1-score (micro avg) 0.4913
2023-10-18 14:43:11,428 saving best model
2023-10-18 14:43:11,464 ----------------------------------------------------------------------------------------------------
2023-10-18 14:43:11,885 epoch 8 - iter 27/275 - loss 0.48504152 - time (sec): 0.42 - samples/sec: 5742.71 - lr: 0.000010 - momentum: 0.000000
2023-10-18 14:43:12,284 epoch 8 - iter 54/275 - loss 0.47425987 - time (sec): 0.82 - samples/sec: 5788.13 - lr: 0.000009 - momentum: 0.000000
2023-10-18 14:43:12,697 epoch 8 - iter 81/275 - loss 0.49146730 - time (sec): 1.23 - samples/sec: 5823.19 - lr: 0.000009 - momentum: 0.000000
2023-10-18 14:43:13,118 epoch 8 - iter 108/275 - loss 0.47302956 - time (sec): 1.65 - samples/sec: 5631.56 - lr: 0.000009 - momentum: 0.000000
2023-10-18 14:43:13,530 epoch 8 - iter 135/275 - loss 0.47714840 - time (sec): 2.07 - samples/sec: 5559.89 - lr: 0.000008 - momentum: 0.000000
2023-10-18 14:43:13,943 epoch 8 - iter 162/275 - loss 0.46515601 - time (sec): 2.48 - samples/sec: 5455.87 - lr: 0.000008 - momentum: 0.000000
2023-10-18 14:43:14,350 epoch 8 - iter 189/275 - loss 0.46293655 - time (sec): 2.89 - samples/sec: 5408.67 - lr: 0.000008 - momentum: 0.000000
2023-10-18 14:43:14,754 epoch 8 - iter 216/275 - loss 0.45905739 - time (sec): 3.29 - samples/sec: 5412.04 - lr: 0.000007 - momentum: 0.000000
2023-10-18 14:43:15,169 epoch 8 - iter 243/275 - loss 0.45136845 - time (sec): 3.71 - samples/sec: 5420.68 - lr: 0.000007 - momentum: 0.000000
2023-10-18 14:43:15,589 epoch 8 - iter 270/275 - loss 0.44211449 - time (sec): 4.12 - samples/sec: 5430.32 - lr: 0.000007 - momentum: 0.000000
2023-10-18 14:43:15,662 ----------------------------------------------------------------------------------------------------
2023-10-18 14:43:15,662 EPOCH 8 done: loss 0.4418 - lr: 0.000007
2023-10-18 14:43:16,034 DEV : loss 0.35667097568511963 - f1-score (micro avg) 0.5222
2023-10-18 14:43:16,037 saving best model
2023-10-18 14:43:16,073 ----------------------------------------------------------------------------------------------------
2023-10-18 14:43:16,475 epoch 9 - iter 27/275 - loss 0.46086074 - time (sec): 0.40 - samples/sec: 5520.10 - lr: 0.000006 - momentum: 0.000000
2023-10-18 14:43:16,880 epoch 9 - iter 54/275 - loss 0.44215721 - time (sec): 0.81 - samples/sec: 5428.44 - lr: 0.000006 - momentum: 0.000000
2023-10-18 14:43:17,284 epoch 9 - iter 81/275 - loss 0.43449692 - time (sec): 1.21 - samples/sec: 5342.81 - lr: 0.000006 - momentum: 0.000000
2023-10-18 14:43:17,695 epoch 9 - iter 108/275 - loss 0.43572935 - time (sec): 1.62 - samples/sec: 5257.18 - lr: 0.000005 - momentum: 0.000000
2023-10-18 14:43:18,106 epoch 9 - iter 135/275 - loss 0.44037196 - time (sec): 2.03 - samples/sec: 5185.35 - lr: 0.000005 - momentum: 0.000000
2023-10-18 14:43:18,504 epoch 9 - iter 162/275 - loss 0.43832233 - time (sec): 2.43 - samples/sec: 5265.56 - lr: 0.000005 - momentum: 0.000000
2023-10-18 14:43:18,920 epoch 9 - iter 189/275 - loss 0.44870956 - time (sec): 2.85 - samples/sec: 5342.73 - lr: 0.000004 - momentum: 0.000000
2023-10-18 14:43:19,346 epoch 9 - iter 216/275 - loss 0.43530574 - time (sec): 3.27 - samples/sec: 5358.24 - lr: 0.000004 - momentum: 0.000000
2023-10-18 14:43:19,757 epoch 9 - iter 243/275 - loss 0.43530429 - time (sec): 3.68 - samples/sec: 5466.45 - lr: 0.000004 - momentum: 0.000000
2023-10-18 14:43:20,171 epoch 9 - iter 270/275 - loss 0.43049081 - time (sec): 4.10 - samples/sec: 5463.51 - lr: 0.000003 - momentum: 0.000000
2023-10-18 14:43:20,242 ----------------------------------------------------------------------------------------------------
2023-10-18 14:43:20,243 EPOCH 9 done: loss 0.4341 - lr: 0.000003
2023-10-18 14:43:20,612 DEV : loss 0.3517986536026001 - f1-score (micro avg) 0.5435
2023-10-18 14:43:20,616 saving best model
2023-10-18 14:43:20,652 ----------------------------------------------------------------------------------------------------
2023-10-18 14:43:21,060 epoch 10 - iter 27/275 - loss 0.44948570 - time (sec): 0.41 - samples/sec: 5415.35 - lr: 0.000003 - momentum: 0.000000
2023-10-18 14:43:21,472 epoch 10 - iter 54/275 - loss 0.44181683 - time (sec): 0.82 - samples/sec: 5634.82 - lr: 0.000003 - momentum: 0.000000
2023-10-18 14:43:21,886 epoch 10 - iter 81/275 - loss 0.47116250 - time (sec): 1.23 - samples/sec: 5627.40 - lr: 0.000002 - momentum: 0.000000
2023-10-18 14:43:22,289 epoch 10 - iter 108/275 - loss 0.44182285 - time (sec): 1.64 - samples/sec: 5505.07 - lr: 0.000002 - momentum: 0.000000
2023-10-18 14:43:22,707 epoch 10 - iter 135/275 - loss 0.44570033 - time (sec): 2.05 - samples/sec: 5632.63 - lr: 0.000002 - momentum: 0.000000
2023-10-18 14:43:23,122 epoch 10 - iter 162/275 - loss 0.43757809 - time (sec): 2.47 - samples/sec: 5552.83 - lr: 0.000001 - momentum: 0.000000
2023-10-18 14:43:23,543 epoch 10 - iter 189/275 - loss 0.43587334 - time (sec): 2.89 - samples/sec: 5475.08 - lr: 0.000001 - momentum: 0.000000
2023-10-18 14:43:23,949 epoch 10 - iter 216/275 - loss 0.43145224 - time (sec): 3.30 - samples/sec: 5462.81 - lr: 0.000001 - momentum: 0.000000
2023-10-18 14:43:24,352 epoch 10 - iter 243/275 - loss 0.43014733 - time (sec): 3.70 - samples/sec: 5453.66 - lr: 0.000000 - momentum: 0.000000
2023-10-18 14:43:24,769 epoch 10 - iter 270/275 - loss 0.42830775 - time (sec): 4.12 - samples/sec: 5433.27 - lr: 0.000000 - momentum: 0.000000
2023-10-18 14:43:24,848 ----------------------------------------------------------------------------------------------------
2023-10-18 14:43:24,848 EPOCH 10 done: loss 0.4263 - lr: 0.000000
2023-10-18 14:43:25,217 DEV : loss 0.3487985134124756 - f1-score (micro avg) 0.5408
2023-10-18 14:43:25,251 ----------------------------------------------------------------------------------------------------
2023-10-18 14:43:25,251 Loading model from best epoch ...
2023-10-18 14:43:25,333 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
2023-10-18 14:43:25,632
Results:
- F-score (micro) 0.5514
- F-score (macro) 0.3272
- Accuracy 0.3903
By class:
precision recall f1-score support
scope 0.5460 0.5398 0.5429 176
pers 0.7826 0.5625 0.6545 128
work 0.4198 0.4595 0.4387 74
object 0.0000 0.0000 0.0000 2
loc 0.0000 0.0000 0.0000 2
micro avg 0.5793 0.5262 0.5514 382
macro avg 0.3497 0.3123 0.3272 382
weighted avg 0.5951 0.5262 0.5544 382
2023-10-18 14:43:25,632 ----------------------------------------------------------------------------------------------------
|