File size: 24,070 Bytes
da1a668
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
2023-10-18 16:47:47,857 ----------------------------------------------------------------------------------------------------
2023-10-18 16:47:47,857 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(32001, 128)
        (position_embeddings): Embedding(512, 128)
        (token_type_embeddings): Embedding(2, 128)
        (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-1): 2 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=128, out_features=128, bias=True)
                (key): Linear(in_features=128, out_features=128, bias=True)
                (value): Linear(in_features=128, out_features=128, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=128, out_features=128, bias=True)
                (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=128, out_features=512, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=512, out_features=128, bias=True)
              (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=128, out_features=128, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=128, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-18 16:47:47,858 ----------------------------------------------------------------------------------------------------
2023-10-18 16:47:47,858 MultiCorpus: 966 train + 219 dev + 204 test sentences
 - NER_HIPE_2022 Corpus: 966 train + 219 dev + 204 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/ajmc/fr/with_doc_seperator
2023-10-18 16:47:47,858 ----------------------------------------------------------------------------------------------------
2023-10-18 16:47:47,858 Train:  966 sentences
2023-10-18 16:47:47,858         (train_with_dev=False, train_with_test=False)
2023-10-18 16:47:47,858 ----------------------------------------------------------------------------------------------------
2023-10-18 16:47:47,858 Training Params:
2023-10-18 16:47:47,858  - learning_rate: "5e-05" 
2023-10-18 16:47:47,858  - mini_batch_size: "4"
2023-10-18 16:47:47,858  - max_epochs: "10"
2023-10-18 16:47:47,858  - shuffle: "True"
2023-10-18 16:47:47,858 ----------------------------------------------------------------------------------------------------
2023-10-18 16:47:47,858 Plugins:
2023-10-18 16:47:47,858  - TensorboardLogger
2023-10-18 16:47:47,858  - LinearScheduler | warmup_fraction: '0.1'
2023-10-18 16:47:47,858 ----------------------------------------------------------------------------------------------------
2023-10-18 16:47:47,858 Final evaluation on model from best epoch (best-model.pt)
2023-10-18 16:47:47,858  - metric: "('micro avg', 'f1-score')"
2023-10-18 16:47:47,858 ----------------------------------------------------------------------------------------------------
2023-10-18 16:47:47,858 Computation:
2023-10-18 16:47:47,858  - compute on device: cuda:0
2023-10-18 16:47:47,858  - embedding storage: none
2023-10-18 16:47:47,858 ----------------------------------------------------------------------------------------------------
2023-10-18 16:47:47,858 Model training base path: "hmbench-ajmc/fr-dbmdz/bert-tiny-historic-multilingual-cased-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5"
2023-10-18 16:47:47,858 ----------------------------------------------------------------------------------------------------
2023-10-18 16:47:47,858 ----------------------------------------------------------------------------------------------------
2023-10-18 16:47:47,859 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-18 16:47:48,254 epoch 1 - iter 24/242 - loss 3.75850769 - time (sec): 0.40 - samples/sec: 5890.04 - lr: 0.000005 - momentum: 0.000000
2023-10-18 16:47:48,614 epoch 1 - iter 48/242 - loss 3.69682205 - time (sec): 0.76 - samples/sec: 5693.84 - lr: 0.000010 - momentum: 0.000000
2023-10-18 16:47:49,004 epoch 1 - iter 72/242 - loss 3.55368346 - time (sec): 1.14 - samples/sec: 6244.70 - lr: 0.000015 - momentum: 0.000000
2023-10-18 16:47:49,375 epoch 1 - iter 96/242 - loss 3.39273430 - time (sec): 1.52 - samples/sec: 6261.71 - lr: 0.000020 - momentum: 0.000000
2023-10-18 16:47:49,743 epoch 1 - iter 120/242 - loss 3.19611354 - time (sec): 1.88 - samples/sec: 6331.42 - lr: 0.000025 - momentum: 0.000000
2023-10-18 16:47:50,103 epoch 1 - iter 144/242 - loss 2.97659823 - time (sec): 2.24 - samples/sec: 6258.32 - lr: 0.000030 - momentum: 0.000000
2023-10-18 16:47:50,496 epoch 1 - iter 168/242 - loss 2.68820008 - time (sec): 2.64 - samples/sec: 6368.43 - lr: 0.000035 - momentum: 0.000000
2023-10-18 16:47:50,881 epoch 1 - iter 192/242 - loss 2.43041565 - time (sec): 3.02 - samples/sec: 6522.56 - lr: 0.000039 - momentum: 0.000000
2023-10-18 16:47:51,261 epoch 1 - iter 216/242 - loss 2.23894411 - time (sec): 3.40 - samples/sec: 6554.26 - lr: 0.000044 - momentum: 0.000000
2023-10-18 16:47:51,619 epoch 1 - iter 240/242 - loss 2.10798640 - time (sec): 3.76 - samples/sec: 6556.78 - lr: 0.000049 - momentum: 0.000000
2023-10-18 16:47:51,644 ----------------------------------------------------------------------------------------------------
2023-10-18 16:47:51,644 EPOCH 1 done: loss 2.1061 - lr: 0.000049
2023-10-18 16:47:52,153 DEV : loss 0.6494866609573364 - f1-score (micro avg)  0.0
2023-10-18 16:47:52,158 ----------------------------------------------------------------------------------------------------
2023-10-18 16:47:52,526 epoch 2 - iter 24/242 - loss 0.70753707 - time (sec): 0.37 - samples/sec: 6256.75 - lr: 0.000049 - momentum: 0.000000
2023-10-18 16:47:52,897 epoch 2 - iter 48/242 - loss 0.69061854 - time (sec): 0.74 - samples/sec: 6476.07 - lr: 0.000049 - momentum: 0.000000
2023-10-18 16:47:53,260 epoch 2 - iter 72/242 - loss 0.66939334 - time (sec): 1.10 - samples/sec: 6544.56 - lr: 0.000048 - momentum: 0.000000
2023-10-18 16:47:53,643 epoch 2 - iter 96/242 - loss 0.67917229 - time (sec): 1.48 - samples/sec: 6655.00 - lr: 0.000048 - momentum: 0.000000
2023-10-18 16:47:54,016 epoch 2 - iter 120/242 - loss 0.66943186 - time (sec): 1.86 - samples/sec: 6506.69 - lr: 0.000047 - momentum: 0.000000
2023-10-18 16:47:54,394 epoch 2 - iter 144/242 - loss 0.65133492 - time (sec): 2.24 - samples/sec: 6580.86 - lr: 0.000047 - momentum: 0.000000
2023-10-18 16:47:54,794 epoch 2 - iter 168/242 - loss 0.61596553 - time (sec): 2.64 - samples/sec: 6568.16 - lr: 0.000046 - momentum: 0.000000
2023-10-18 16:47:55,162 epoch 2 - iter 192/242 - loss 0.59965228 - time (sec): 3.00 - samples/sec: 6595.00 - lr: 0.000046 - momentum: 0.000000
2023-10-18 16:47:55,521 epoch 2 - iter 216/242 - loss 0.60012603 - time (sec): 3.36 - samples/sec: 6573.83 - lr: 0.000045 - momentum: 0.000000
2023-10-18 16:47:55,887 epoch 2 - iter 240/242 - loss 0.59113460 - time (sec): 3.73 - samples/sec: 6573.62 - lr: 0.000045 - momentum: 0.000000
2023-10-18 16:47:55,915 ----------------------------------------------------------------------------------------------------
2023-10-18 16:47:55,915 EPOCH 2 done: loss 0.5933 - lr: 0.000045
2023-10-18 16:47:56,345 DEV : loss 0.3973432183265686 - f1-score (micro avg)  0.2292
2023-10-18 16:47:56,350 saving best model
2023-10-18 16:47:56,377 ----------------------------------------------------------------------------------------------------
2023-10-18 16:47:56,758 epoch 3 - iter 24/242 - loss 0.47094547 - time (sec): 0.38 - samples/sec: 6558.17 - lr: 0.000044 - momentum: 0.000000
2023-10-18 16:47:57,124 epoch 3 - iter 48/242 - loss 0.49377345 - time (sec): 0.75 - samples/sec: 6428.73 - lr: 0.000043 - momentum: 0.000000
2023-10-18 16:47:57,481 epoch 3 - iter 72/242 - loss 0.47276259 - time (sec): 1.10 - samples/sec: 6393.37 - lr: 0.000043 - momentum: 0.000000
2023-10-18 16:47:57,859 epoch 3 - iter 96/242 - loss 0.47065066 - time (sec): 1.48 - samples/sec: 6450.24 - lr: 0.000042 - momentum: 0.000000
2023-10-18 16:47:58,250 epoch 3 - iter 120/242 - loss 0.46440215 - time (sec): 1.87 - samples/sec: 6423.01 - lr: 0.000042 - momentum: 0.000000
2023-10-18 16:47:58,622 epoch 3 - iter 144/242 - loss 0.44989391 - time (sec): 2.24 - samples/sec: 6365.98 - lr: 0.000041 - momentum: 0.000000
2023-10-18 16:47:58,996 epoch 3 - iter 168/242 - loss 0.44144086 - time (sec): 2.62 - samples/sec: 6442.83 - lr: 0.000041 - momentum: 0.000000
2023-10-18 16:47:59,377 epoch 3 - iter 192/242 - loss 0.43386345 - time (sec): 3.00 - samples/sec: 6568.59 - lr: 0.000040 - momentum: 0.000000
2023-10-18 16:47:59,760 epoch 3 - iter 216/242 - loss 0.42346837 - time (sec): 3.38 - samples/sec: 6565.04 - lr: 0.000040 - momentum: 0.000000
2023-10-18 16:48:00,133 epoch 3 - iter 240/242 - loss 0.42387037 - time (sec): 3.76 - samples/sec: 6544.86 - lr: 0.000039 - momentum: 0.000000
2023-10-18 16:48:00,159 ----------------------------------------------------------------------------------------------------
2023-10-18 16:48:00,160 EPOCH 3 done: loss 0.4236 - lr: 0.000039
2023-10-18 16:48:00,579 DEV : loss 0.315167635679245 - f1-score (micro avg)  0.5118
2023-10-18 16:48:00,583 saving best model
2023-10-18 16:48:00,617 ----------------------------------------------------------------------------------------------------
2023-10-18 16:48:00,976 epoch 4 - iter 24/242 - loss 0.37876134 - time (sec): 0.36 - samples/sec: 5829.16 - lr: 0.000038 - momentum: 0.000000
2023-10-18 16:48:01,352 epoch 4 - iter 48/242 - loss 0.39303874 - time (sec): 0.73 - samples/sec: 6092.55 - lr: 0.000038 - momentum: 0.000000
2023-10-18 16:48:01,733 epoch 4 - iter 72/242 - loss 0.38107267 - time (sec): 1.11 - samples/sec: 6523.26 - lr: 0.000037 - momentum: 0.000000
2023-10-18 16:48:02,105 epoch 4 - iter 96/242 - loss 0.38620105 - time (sec): 1.49 - samples/sec: 6472.65 - lr: 0.000037 - momentum: 0.000000
2023-10-18 16:48:02,472 epoch 4 - iter 120/242 - loss 0.38815951 - time (sec): 1.85 - samples/sec: 6515.11 - lr: 0.000036 - momentum: 0.000000
2023-10-18 16:48:02,836 epoch 4 - iter 144/242 - loss 0.37887595 - time (sec): 2.22 - samples/sec: 6579.66 - lr: 0.000036 - momentum: 0.000000
2023-10-18 16:48:03,210 epoch 4 - iter 168/242 - loss 0.37809209 - time (sec): 2.59 - samples/sec: 6674.66 - lr: 0.000035 - momentum: 0.000000
2023-10-18 16:48:03,586 epoch 4 - iter 192/242 - loss 0.36934478 - time (sec): 2.97 - samples/sec: 6664.24 - lr: 0.000035 - momentum: 0.000000
2023-10-18 16:48:03,939 epoch 4 - iter 216/242 - loss 0.37593866 - time (sec): 3.32 - samples/sec: 6695.54 - lr: 0.000034 - momentum: 0.000000
2023-10-18 16:48:04,276 epoch 4 - iter 240/242 - loss 0.36981793 - time (sec): 3.66 - samples/sec: 6742.05 - lr: 0.000033 - momentum: 0.000000
2023-10-18 16:48:04,300 ----------------------------------------------------------------------------------------------------
2023-10-18 16:48:04,300 EPOCH 4 done: loss 0.3695 - lr: 0.000033
2023-10-18 16:48:04,730 DEV : loss 0.2958347797393799 - f1-score (micro avg)  0.512
2023-10-18 16:48:04,734 saving best model
2023-10-18 16:48:04,769 ----------------------------------------------------------------------------------------------------
2023-10-18 16:48:05,110 epoch 5 - iter 24/242 - loss 0.35480541 - time (sec): 0.34 - samples/sec: 7224.38 - lr: 0.000033 - momentum: 0.000000
2023-10-18 16:48:05,450 epoch 5 - iter 48/242 - loss 0.35459295 - time (sec): 0.68 - samples/sec: 7398.74 - lr: 0.000032 - momentum: 0.000000
2023-10-18 16:48:05,784 epoch 5 - iter 72/242 - loss 0.34181991 - time (sec): 1.01 - samples/sec: 7421.59 - lr: 0.000032 - momentum: 0.000000
2023-10-18 16:48:06,124 epoch 5 - iter 96/242 - loss 0.35420576 - time (sec): 1.35 - samples/sec: 7517.23 - lr: 0.000031 - momentum: 0.000000
2023-10-18 16:48:06,457 epoch 5 - iter 120/242 - loss 0.35768803 - time (sec): 1.69 - samples/sec: 7460.18 - lr: 0.000031 - momentum: 0.000000
2023-10-18 16:48:06,792 epoch 5 - iter 144/242 - loss 0.35518931 - time (sec): 2.02 - samples/sec: 7420.94 - lr: 0.000030 - momentum: 0.000000
2023-10-18 16:48:07,137 epoch 5 - iter 168/242 - loss 0.34918538 - time (sec): 2.37 - samples/sec: 7362.92 - lr: 0.000030 - momentum: 0.000000
2023-10-18 16:48:07,471 epoch 5 - iter 192/242 - loss 0.34897337 - time (sec): 2.70 - samples/sec: 7380.41 - lr: 0.000029 - momentum: 0.000000
2023-10-18 16:48:07,809 epoch 5 - iter 216/242 - loss 0.33635374 - time (sec): 3.04 - samples/sec: 7341.39 - lr: 0.000028 - momentum: 0.000000
2023-10-18 16:48:08,132 epoch 5 - iter 240/242 - loss 0.33487180 - time (sec): 3.36 - samples/sec: 7325.66 - lr: 0.000028 - momentum: 0.000000
2023-10-18 16:48:08,157 ----------------------------------------------------------------------------------------------------
2023-10-18 16:48:08,157 EPOCH 5 done: loss 0.3352 - lr: 0.000028
2023-10-18 16:48:08,597 DEV : loss 0.2639392018318176 - f1-score (micro avg)  0.5037
2023-10-18 16:48:08,602 ----------------------------------------------------------------------------------------------------
2023-10-18 16:48:08,962 epoch 6 - iter 24/242 - loss 0.31375370 - time (sec): 0.36 - samples/sec: 7149.00 - lr: 0.000027 - momentum: 0.000000
2023-10-18 16:48:09,335 epoch 6 - iter 48/242 - loss 0.31377803 - time (sec): 0.73 - samples/sec: 6842.22 - lr: 0.000027 - momentum: 0.000000
2023-10-18 16:48:09,710 epoch 6 - iter 72/242 - loss 0.32611832 - time (sec): 1.11 - samples/sec: 6809.96 - lr: 0.000026 - momentum: 0.000000
2023-10-18 16:48:10,072 epoch 6 - iter 96/242 - loss 0.29529436 - time (sec): 1.47 - samples/sec: 6638.72 - lr: 0.000026 - momentum: 0.000000
2023-10-18 16:48:10,448 epoch 6 - iter 120/242 - loss 0.29275130 - time (sec): 1.85 - samples/sec: 6661.09 - lr: 0.000025 - momentum: 0.000000
2023-10-18 16:48:10,841 epoch 6 - iter 144/242 - loss 0.29614971 - time (sec): 2.24 - samples/sec: 6602.79 - lr: 0.000025 - momentum: 0.000000
2023-10-18 16:48:11,207 epoch 6 - iter 168/242 - loss 0.30099987 - time (sec): 2.60 - samples/sec: 6576.18 - lr: 0.000024 - momentum: 0.000000
2023-10-18 16:48:11,598 epoch 6 - iter 192/242 - loss 0.30400838 - time (sec): 3.00 - samples/sec: 6568.08 - lr: 0.000023 - momentum: 0.000000
2023-10-18 16:48:11,968 epoch 6 - iter 216/242 - loss 0.30647937 - time (sec): 3.37 - samples/sec: 6519.76 - lr: 0.000023 - momentum: 0.000000
2023-10-18 16:48:12,357 epoch 6 - iter 240/242 - loss 0.30712937 - time (sec): 3.75 - samples/sec: 6543.49 - lr: 0.000022 - momentum: 0.000000
2023-10-18 16:48:12,383 ----------------------------------------------------------------------------------------------------
2023-10-18 16:48:12,384 EPOCH 6 done: loss 0.3079 - lr: 0.000022
2023-10-18 16:48:12,821 DEV : loss 0.2603849470615387 - f1-score (micro avg)  0.5104
2023-10-18 16:48:12,826 ----------------------------------------------------------------------------------------------------
2023-10-18 16:48:13,215 epoch 7 - iter 24/242 - loss 0.34851167 - time (sec): 0.39 - samples/sec: 6616.61 - lr: 0.000022 - momentum: 0.000000
2023-10-18 16:48:13,577 epoch 7 - iter 48/242 - loss 0.34722378 - time (sec): 0.75 - samples/sec: 6247.39 - lr: 0.000021 - momentum: 0.000000
2023-10-18 16:48:13,944 epoch 7 - iter 72/242 - loss 0.32206806 - time (sec): 1.12 - samples/sec: 6327.44 - lr: 0.000021 - momentum: 0.000000
2023-10-18 16:48:14,324 epoch 7 - iter 96/242 - loss 0.30779121 - time (sec): 1.50 - samples/sec: 6279.87 - lr: 0.000020 - momentum: 0.000000
2023-10-18 16:48:14,695 epoch 7 - iter 120/242 - loss 0.29721250 - time (sec): 1.87 - samples/sec: 6374.73 - lr: 0.000020 - momentum: 0.000000
2023-10-18 16:48:15,019 epoch 7 - iter 144/242 - loss 0.29074408 - time (sec): 2.19 - samples/sec: 6609.94 - lr: 0.000019 - momentum: 0.000000
2023-10-18 16:48:15,322 epoch 7 - iter 168/242 - loss 0.28770394 - time (sec): 2.50 - samples/sec: 6789.27 - lr: 0.000018 - momentum: 0.000000
2023-10-18 16:48:15,738 epoch 7 - iter 192/242 - loss 0.28551813 - time (sec): 2.91 - samples/sec: 6828.57 - lr: 0.000018 - momentum: 0.000000
2023-10-18 16:48:16,136 epoch 7 - iter 216/242 - loss 0.28346652 - time (sec): 3.31 - samples/sec: 6699.72 - lr: 0.000017 - momentum: 0.000000
2023-10-18 16:48:16,525 epoch 7 - iter 240/242 - loss 0.28920613 - time (sec): 3.70 - samples/sec: 6634.99 - lr: 0.000017 - momentum: 0.000000
2023-10-18 16:48:16,553 ----------------------------------------------------------------------------------------------------
2023-10-18 16:48:16,553 EPOCH 7 done: loss 0.2910 - lr: 0.000017
2023-10-18 16:48:16,998 DEV : loss 0.24460992217063904 - f1-score (micro avg)  0.5291
2023-10-18 16:48:17,002 saving best model
2023-10-18 16:48:17,034 ----------------------------------------------------------------------------------------------------
2023-10-18 16:48:17,417 epoch 8 - iter 24/242 - loss 0.26034674 - time (sec): 0.38 - samples/sec: 6988.76 - lr: 0.000016 - momentum: 0.000000
2023-10-18 16:48:17,790 epoch 8 - iter 48/242 - loss 0.27344716 - time (sec): 0.76 - samples/sec: 6928.02 - lr: 0.000016 - momentum: 0.000000
2023-10-18 16:48:18,146 epoch 8 - iter 72/242 - loss 0.29604730 - time (sec): 1.11 - samples/sec: 6753.89 - lr: 0.000015 - momentum: 0.000000
2023-10-18 16:48:18,516 epoch 8 - iter 96/242 - loss 0.28714663 - time (sec): 1.48 - samples/sec: 6654.86 - lr: 0.000015 - momentum: 0.000000
2023-10-18 16:48:18,918 epoch 8 - iter 120/242 - loss 0.28223276 - time (sec): 1.88 - samples/sec: 6585.68 - lr: 0.000014 - momentum: 0.000000
2023-10-18 16:48:19,302 epoch 8 - iter 144/242 - loss 0.29541982 - time (sec): 2.27 - samples/sec: 6662.43 - lr: 0.000013 - momentum: 0.000000
2023-10-18 16:48:19,670 epoch 8 - iter 168/242 - loss 0.29484539 - time (sec): 2.63 - samples/sec: 6590.53 - lr: 0.000013 - momentum: 0.000000
2023-10-18 16:48:20,039 epoch 8 - iter 192/242 - loss 0.28665546 - time (sec): 3.00 - samples/sec: 6571.13 - lr: 0.000012 - momentum: 0.000000
2023-10-18 16:48:20,419 epoch 8 - iter 216/242 - loss 0.28212190 - time (sec): 3.38 - samples/sec: 6572.82 - lr: 0.000012 - momentum: 0.000000
2023-10-18 16:48:20,800 epoch 8 - iter 240/242 - loss 0.28301868 - time (sec): 3.76 - samples/sec: 6532.36 - lr: 0.000011 - momentum: 0.000000
2023-10-18 16:48:20,830 ----------------------------------------------------------------------------------------------------
2023-10-18 16:48:20,830 EPOCH 8 done: loss 0.2845 - lr: 0.000011
2023-10-18 16:48:21,262 DEV : loss 0.24663908779621124 - f1-score (micro avg)  0.547
2023-10-18 16:48:21,266 saving best model
2023-10-18 16:48:21,306 ----------------------------------------------------------------------------------------------------
2023-10-18 16:48:21,698 epoch 9 - iter 24/242 - loss 0.25854915 - time (sec): 0.39 - samples/sec: 5206.54 - lr: 0.000011 - momentum: 0.000000
2023-10-18 16:48:22,074 epoch 9 - iter 48/242 - loss 0.26339176 - time (sec): 0.77 - samples/sec: 5874.13 - lr: 0.000010 - momentum: 0.000000
2023-10-18 16:48:22,487 epoch 9 - iter 72/242 - loss 0.27772691 - time (sec): 1.18 - samples/sec: 6048.06 - lr: 0.000010 - momentum: 0.000000
2023-10-18 16:48:22,904 epoch 9 - iter 96/242 - loss 0.29699368 - time (sec): 1.60 - samples/sec: 6003.44 - lr: 0.000009 - momentum: 0.000000
2023-10-18 16:48:23,309 epoch 9 - iter 120/242 - loss 0.29822567 - time (sec): 2.00 - samples/sec: 6020.52 - lr: 0.000008 - momentum: 0.000000
2023-10-18 16:48:23,675 epoch 9 - iter 144/242 - loss 0.28198629 - time (sec): 2.37 - samples/sec: 6033.25 - lr: 0.000008 - momentum: 0.000000
2023-10-18 16:48:24,029 epoch 9 - iter 168/242 - loss 0.28545819 - time (sec): 2.72 - samples/sec: 6058.61 - lr: 0.000007 - momentum: 0.000000
2023-10-18 16:48:24,407 epoch 9 - iter 192/242 - loss 0.28498541 - time (sec): 3.10 - samples/sec: 6204.10 - lr: 0.000007 - momentum: 0.000000
2023-10-18 16:48:24,789 epoch 9 - iter 216/242 - loss 0.27924178 - time (sec): 3.48 - samples/sec: 6316.12 - lr: 0.000006 - momentum: 0.000000
2023-10-18 16:48:25,167 epoch 9 - iter 240/242 - loss 0.27642574 - time (sec): 3.86 - samples/sec: 6399.42 - lr: 0.000006 - momentum: 0.000000
2023-10-18 16:48:25,195 ----------------------------------------------------------------------------------------------------
2023-10-18 16:48:25,195 EPOCH 9 done: loss 0.2766 - lr: 0.000006
2023-10-18 16:48:25,629 DEV : loss 0.2363634556531906 - f1-score (micro avg)  0.5531
2023-10-18 16:48:25,633 saving best model
2023-10-18 16:48:25,666 ----------------------------------------------------------------------------------------------------
2023-10-18 16:48:26,029 epoch 10 - iter 24/242 - loss 0.25436219 - time (sec): 0.36 - samples/sec: 6207.54 - lr: 0.000005 - momentum: 0.000000
2023-10-18 16:48:26,399 epoch 10 - iter 48/242 - loss 0.25221311 - time (sec): 0.73 - samples/sec: 6402.65 - lr: 0.000005 - momentum: 0.000000
2023-10-18 16:48:26,783 epoch 10 - iter 72/242 - loss 0.25841165 - time (sec): 1.12 - samples/sec: 6376.23 - lr: 0.000004 - momentum: 0.000000
2023-10-18 16:48:27,177 epoch 10 - iter 96/242 - loss 0.25213135 - time (sec): 1.51 - samples/sec: 6420.68 - lr: 0.000003 - momentum: 0.000000
2023-10-18 16:48:27,546 epoch 10 - iter 120/242 - loss 0.26644826 - time (sec): 1.88 - samples/sec: 6397.10 - lr: 0.000003 - momentum: 0.000000
2023-10-18 16:48:27,924 epoch 10 - iter 144/242 - loss 0.27616057 - time (sec): 2.26 - samples/sec: 6541.61 - lr: 0.000002 - momentum: 0.000000
2023-10-18 16:48:28,299 epoch 10 - iter 168/242 - loss 0.26407937 - time (sec): 2.63 - samples/sec: 6555.33 - lr: 0.000002 - momentum: 0.000000
2023-10-18 16:48:28,661 epoch 10 - iter 192/242 - loss 0.26815631 - time (sec): 2.99 - samples/sec: 6561.04 - lr: 0.000001 - momentum: 0.000000
2023-10-18 16:48:29,039 epoch 10 - iter 216/242 - loss 0.26617524 - time (sec): 3.37 - samples/sec: 6565.71 - lr: 0.000001 - momentum: 0.000000
2023-10-18 16:48:29,406 epoch 10 - iter 240/242 - loss 0.27271415 - time (sec): 3.74 - samples/sec: 6568.71 - lr: 0.000000 - momentum: 0.000000
2023-10-18 16:48:29,435 ----------------------------------------------------------------------------------------------------
2023-10-18 16:48:29,435 EPOCH 10 done: loss 0.2712 - lr: 0.000000
2023-10-18 16:48:29,878 DEV : loss 0.23566073179244995 - f1-score (micro avg)  0.5531
2023-10-18 16:48:29,912 ----------------------------------------------------------------------------------------------------
2023-10-18 16:48:29,913 Loading model from best epoch ...
2023-10-18 16:48:29,981 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
2023-10-18 16:48:30,398 
Results:
- F-score (micro) 0.4879
- F-score (macro) 0.2774
- Accuracy 0.3387

By class:
              precision    recall  f1-score   support

       scope     0.3192    0.5271    0.3977       129
        pers     0.6154    0.7482    0.6753       139
        work     0.4634    0.2375    0.3140        80
         loc     0.0000    0.0000    0.0000         9
        date     0.0000    0.0000    0.0000         3

   micro avg     0.4515    0.5306    0.4879       360
   macro avg     0.2796    0.3026    0.2774       360
weighted avg     0.4550    0.5306    0.4730       360

2023-10-18 16:48:30,398 ----------------------------------------------------------------------------------------------------