File size: 24,227 Bytes
2c9721b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
2023-10-18 17:39:46,413 ----------------------------------------------------------------------------------------------------
2023-10-18 17:39:46,413 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(32001, 128)
        (position_embeddings): Embedding(512, 128)
        (token_type_embeddings): Embedding(2, 128)
        (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-1): 2 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=128, out_features=128, bias=True)
                (key): Linear(in_features=128, out_features=128, bias=True)
                (value): Linear(in_features=128, out_features=128, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=128, out_features=128, bias=True)
                (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=128, out_features=512, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=512, out_features=128, bias=True)
              (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=128, out_features=128, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=128, out_features=21, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-18 17:39:46,413 ----------------------------------------------------------------------------------------------------
2023-10-18 17:39:46,413 MultiCorpus: 3575 train + 1235 dev + 1266 test sentences
 - NER_HIPE_2022 Corpus: 3575 train + 1235 dev + 1266 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/de/with_doc_seperator
2023-10-18 17:39:46,413 ----------------------------------------------------------------------------------------------------
2023-10-18 17:39:46,413 Train:  3575 sentences
2023-10-18 17:39:46,413         (train_with_dev=False, train_with_test=False)
2023-10-18 17:39:46,413 ----------------------------------------------------------------------------------------------------
2023-10-18 17:39:46,413 Training Params:
2023-10-18 17:39:46,414  - learning_rate: "5e-05" 
2023-10-18 17:39:46,414  - mini_batch_size: "4"
2023-10-18 17:39:46,414  - max_epochs: "10"
2023-10-18 17:39:46,414  - shuffle: "True"
2023-10-18 17:39:46,414 ----------------------------------------------------------------------------------------------------
2023-10-18 17:39:46,414 Plugins:
2023-10-18 17:39:46,414  - TensorboardLogger
2023-10-18 17:39:46,414  - LinearScheduler | warmup_fraction: '0.1'
2023-10-18 17:39:46,414 ----------------------------------------------------------------------------------------------------
2023-10-18 17:39:46,414 Final evaluation on model from best epoch (best-model.pt)
2023-10-18 17:39:46,414  - metric: "('micro avg', 'f1-score')"
2023-10-18 17:39:46,414 ----------------------------------------------------------------------------------------------------
2023-10-18 17:39:46,414 Computation:
2023-10-18 17:39:46,414  - compute on device: cuda:0
2023-10-18 17:39:46,414  - embedding storage: none
2023-10-18 17:39:46,414 ----------------------------------------------------------------------------------------------------
2023-10-18 17:39:46,414 Model training base path: "hmbench-hipe2020/de-dbmdz/bert-tiny-historic-multilingual-cased-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1"
2023-10-18 17:39:46,414 ----------------------------------------------------------------------------------------------------
2023-10-18 17:39:46,414 ----------------------------------------------------------------------------------------------------
2023-10-18 17:39:46,414 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-18 17:39:47,622 epoch 1 - iter 89/894 - loss 3.56088883 - time (sec): 1.21 - samples/sec: 6861.97 - lr: 0.000005 - momentum: 0.000000
2023-10-18 17:39:48,995 epoch 1 - iter 178/894 - loss 3.27510972 - time (sec): 2.58 - samples/sec: 6479.87 - lr: 0.000010 - momentum: 0.000000
2023-10-18 17:39:50,373 epoch 1 - iter 267/894 - loss 2.81223450 - time (sec): 3.96 - samples/sec: 6392.20 - lr: 0.000015 - momentum: 0.000000
2023-10-18 17:39:51,750 epoch 1 - iter 356/894 - loss 2.34160427 - time (sec): 5.34 - samples/sec: 6341.25 - lr: 0.000020 - momentum: 0.000000
2023-10-18 17:39:53,122 epoch 1 - iter 445/894 - loss 1.99483895 - time (sec): 6.71 - samples/sec: 6435.14 - lr: 0.000025 - momentum: 0.000000
2023-10-18 17:39:54,518 epoch 1 - iter 534/894 - loss 1.76339110 - time (sec): 8.10 - samples/sec: 6399.97 - lr: 0.000030 - momentum: 0.000000
2023-10-18 17:39:55,900 epoch 1 - iter 623/894 - loss 1.60438052 - time (sec): 9.49 - samples/sec: 6363.56 - lr: 0.000035 - momentum: 0.000000
2023-10-18 17:39:57,316 epoch 1 - iter 712/894 - loss 1.46822053 - time (sec): 10.90 - samples/sec: 6361.48 - lr: 0.000040 - momentum: 0.000000
2023-10-18 17:39:58,713 epoch 1 - iter 801/894 - loss 1.37216087 - time (sec): 12.30 - samples/sec: 6342.23 - lr: 0.000045 - momentum: 0.000000
2023-10-18 17:40:00,082 epoch 1 - iter 890/894 - loss 1.29129924 - time (sec): 13.67 - samples/sec: 6295.80 - lr: 0.000050 - momentum: 0.000000
2023-10-18 17:40:00,144 ----------------------------------------------------------------------------------------------------
2023-10-18 17:40:00,144 EPOCH 1 done: loss 1.2874 - lr: 0.000050
2023-10-18 17:40:02,389 DEV : loss 0.42374274134635925 - f1-score (micro avg)  0.0047
2023-10-18 17:40:02,417 saving best model
2023-10-18 17:40:02,449 ----------------------------------------------------------------------------------------------------
2023-10-18 17:40:03,852 epoch 2 - iter 89/894 - loss 0.53456617 - time (sec): 1.40 - samples/sec: 6761.96 - lr: 0.000049 - momentum: 0.000000
2023-10-18 17:40:05,224 epoch 2 - iter 178/894 - loss 0.48876177 - time (sec): 2.77 - samples/sec: 6667.46 - lr: 0.000049 - momentum: 0.000000
2023-10-18 17:40:06,685 epoch 2 - iter 267/894 - loss 0.48305597 - time (sec): 4.24 - samples/sec: 6520.37 - lr: 0.000048 - momentum: 0.000000
2023-10-18 17:40:08,045 epoch 2 - iter 356/894 - loss 0.47711486 - time (sec): 5.60 - samples/sec: 6263.90 - lr: 0.000048 - momentum: 0.000000
2023-10-18 17:40:09,415 epoch 2 - iter 445/894 - loss 0.46925640 - time (sec): 6.97 - samples/sec: 6328.63 - lr: 0.000047 - momentum: 0.000000
2023-10-18 17:40:10,812 epoch 2 - iter 534/894 - loss 0.45601089 - time (sec): 8.36 - samples/sec: 6251.92 - lr: 0.000047 - momentum: 0.000000
2023-10-18 17:40:12,213 epoch 2 - iter 623/894 - loss 0.45694794 - time (sec): 9.76 - samples/sec: 6209.82 - lr: 0.000046 - momentum: 0.000000
2023-10-18 17:40:13,604 epoch 2 - iter 712/894 - loss 0.45374120 - time (sec): 11.15 - samples/sec: 6209.76 - lr: 0.000046 - momentum: 0.000000
2023-10-18 17:40:14,984 epoch 2 - iter 801/894 - loss 0.45183281 - time (sec): 12.53 - samples/sec: 6213.64 - lr: 0.000045 - momentum: 0.000000
2023-10-18 17:40:16,315 epoch 2 - iter 890/894 - loss 0.44611403 - time (sec): 13.87 - samples/sec: 6220.24 - lr: 0.000044 - momentum: 0.000000
2023-10-18 17:40:16,371 ----------------------------------------------------------------------------------------------------
2023-10-18 17:40:16,371 EPOCH 2 done: loss 0.4465 - lr: 0.000044
2023-10-18 17:40:21,629 DEV : loss 0.33446836471557617 - f1-score (micro avg)  0.2825
2023-10-18 17:40:21,655 saving best model
2023-10-18 17:40:21,692 ----------------------------------------------------------------------------------------------------
2023-10-18 17:40:23,074 epoch 3 - iter 89/894 - loss 0.37382829 - time (sec): 1.38 - samples/sec: 5689.22 - lr: 0.000044 - momentum: 0.000000
2023-10-18 17:40:24,471 epoch 3 - iter 178/894 - loss 0.38391719 - time (sec): 2.78 - samples/sec: 6001.80 - lr: 0.000043 - momentum: 0.000000
2023-10-18 17:40:25,842 epoch 3 - iter 267/894 - loss 0.38351814 - time (sec): 4.15 - samples/sec: 5934.83 - lr: 0.000043 - momentum: 0.000000
2023-10-18 17:40:27,227 epoch 3 - iter 356/894 - loss 0.37200370 - time (sec): 5.53 - samples/sec: 6050.91 - lr: 0.000042 - momentum: 0.000000
2023-10-18 17:40:28,617 epoch 3 - iter 445/894 - loss 0.36806798 - time (sec): 6.92 - samples/sec: 6106.77 - lr: 0.000042 - momentum: 0.000000
2023-10-18 17:40:30,026 epoch 3 - iter 534/894 - loss 0.36726729 - time (sec): 8.33 - samples/sec: 6160.71 - lr: 0.000041 - momentum: 0.000000
2023-10-18 17:40:31,399 epoch 3 - iter 623/894 - loss 0.36063396 - time (sec): 9.71 - samples/sec: 6126.60 - lr: 0.000041 - momentum: 0.000000
2023-10-18 17:40:32,762 epoch 3 - iter 712/894 - loss 0.36575094 - time (sec): 11.07 - samples/sec: 6135.09 - lr: 0.000040 - momentum: 0.000000
2023-10-18 17:40:34,215 epoch 3 - iter 801/894 - loss 0.36442893 - time (sec): 12.52 - samples/sec: 6201.81 - lr: 0.000039 - momentum: 0.000000
2023-10-18 17:40:35,641 epoch 3 - iter 890/894 - loss 0.36483048 - time (sec): 13.95 - samples/sec: 6178.05 - lr: 0.000039 - momentum: 0.000000
2023-10-18 17:40:35,698 ----------------------------------------------------------------------------------------------------
2023-10-18 17:40:35,698 EPOCH 3 done: loss 0.3646 - lr: 0.000039
2023-10-18 17:40:40,927 DEV : loss 0.3075636327266693 - f1-score (micro avg)  0.3335
2023-10-18 17:40:40,953 saving best model
2023-10-18 17:40:40,988 ----------------------------------------------------------------------------------------------------
2023-10-18 17:40:42,396 epoch 4 - iter 89/894 - loss 0.33269146 - time (sec): 1.41 - samples/sec: 6501.63 - lr: 0.000038 - momentum: 0.000000
2023-10-18 17:40:43,794 epoch 4 - iter 178/894 - loss 0.34094448 - time (sec): 2.81 - samples/sec: 6329.83 - lr: 0.000038 - momentum: 0.000000
2023-10-18 17:40:45,184 epoch 4 - iter 267/894 - loss 0.34400084 - time (sec): 4.20 - samples/sec: 6379.06 - lr: 0.000037 - momentum: 0.000000
2023-10-18 17:40:46,582 epoch 4 - iter 356/894 - loss 0.33882719 - time (sec): 5.59 - samples/sec: 6391.37 - lr: 0.000037 - momentum: 0.000000
2023-10-18 17:40:47,931 epoch 4 - iter 445/894 - loss 0.33813656 - time (sec): 6.94 - samples/sec: 6345.08 - lr: 0.000036 - momentum: 0.000000
2023-10-18 17:40:49,322 epoch 4 - iter 534/894 - loss 0.33235534 - time (sec): 8.33 - samples/sec: 6301.14 - lr: 0.000036 - momentum: 0.000000
2023-10-18 17:40:50,663 epoch 4 - iter 623/894 - loss 0.32836804 - time (sec): 9.67 - samples/sec: 6326.35 - lr: 0.000035 - momentum: 0.000000
2023-10-18 17:40:51,909 epoch 4 - iter 712/894 - loss 0.32290979 - time (sec): 10.92 - samples/sec: 6372.20 - lr: 0.000034 - momentum: 0.000000
2023-10-18 17:40:53,313 epoch 4 - iter 801/894 - loss 0.32823727 - time (sec): 12.32 - samples/sec: 6320.06 - lr: 0.000034 - momentum: 0.000000
2023-10-18 17:40:54,663 epoch 4 - iter 890/894 - loss 0.32666126 - time (sec): 13.67 - samples/sec: 6305.84 - lr: 0.000033 - momentum: 0.000000
2023-10-18 17:40:54,722 ----------------------------------------------------------------------------------------------------
2023-10-18 17:40:54,722 EPOCH 4 done: loss 0.3266 - lr: 0.000033
2023-10-18 17:41:00,006 DEV : loss 0.3056620657444 - f1-score (micro avg)  0.344
2023-10-18 17:41:00,032 saving best model
2023-10-18 17:41:00,066 ----------------------------------------------------------------------------------------------------
2023-10-18 17:41:01,447 epoch 5 - iter 89/894 - loss 0.28380145 - time (sec): 1.38 - samples/sec: 5916.31 - lr: 0.000033 - momentum: 0.000000
2023-10-18 17:41:02,817 epoch 5 - iter 178/894 - loss 0.30119921 - time (sec): 2.75 - samples/sec: 5831.65 - lr: 0.000032 - momentum: 0.000000
2023-10-18 17:41:04,183 epoch 5 - iter 267/894 - loss 0.28339258 - time (sec): 4.12 - samples/sec: 5840.96 - lr: 0.000032 - momentum: 0.000000
2023-10-18 17:41:05,570 epoch 5 - iter 356/894 - loss 0.28951457 - time (sec): 5.50 - samples/sec: 6113.84 - lr: 0.000031 - momentum: 0.000000
2023-10-18 17:41:06,973 epoch 5 - iter 445/894 - loss 0.28772870 - time (sec): 6.91 - samples/sec: 6168.89 - lr: 0.000031 - momentum: 0.000000
2023-10-18 17:41:08,411 epoch 5 - iter 534/894 - loss 0.28686799 - time (sec): 8.34 - samples/sec: 6214.59 - lr: 0.000030 - momentum: 0.000000
2023-10-18 17:41:09,777 epoch 5 - iter 623/894 - loss 0.28834965 - time (sec): 9.71 - samples/sec: 6237.61 - lr: 0.000029 - momentum: 0.000000
2023-10-18 17:41:11,142 epoch 5 - iter 712/894 - loss 0.29652767 - time (sec): 11.08 - samples/sec: 6243.32 - lr: 0.000029 - momentum: 0.000000
2023-10-18 17:41:12,534 epoch 5 - iter 801/894 - loss 0.29303123 - time (sec): 12.47 - samples/sec: 6200.43 - lr: 0.000028 - momentum: 0.000000
2023-10-18 17:41:13,939 epoch 5 - iter 890/894 - loss 0.29497246 - time (sec): 13.87 - samples/sec: 6214.23 - lr: 0.000028 - momentum: 0.000000
2023-10-18 17:41:13,998 ----------------------------------------------------------------------------------------------------
2023-10-18 17:41:13,998 EPOCH 5 done: loss 0.2971 - lr: 0.000028
2023-10-18 17:41:18,978 DEV : loss 0.3028002083301544 - f1-score (micro avg)  0.3519
2023-10-18 17:41:19,003 saving best model
2023-10-18 17:41:19,038 ----------------------------------------------------------------------------------------------------
2023-10-18 17:41:20,430 epoch 6 - iter 89/894 - loss 0.30126272 - time (sec): 1.39 - samples/sec: 6024.34 - lr: 0.000027 - momentum: 0.000000
2023-10-18 17:41:21,869 epoch 6 - iter 178/894 - loss 0.27254140 - time (sec): 2.83 - samples/sec: 6564.55 - lr: 0.000027 - momentum: 0.000000
2023-10-18 17:41:23,268 epoch 6 - iter 267/894 - loss 0.25649955 - time (sec): 4.23 - samples/sec: 6363.86 - lr: 0.000026 - momentum: 0.000000
2023-10-18 17:41:24,660 epoch 6 - iter 356/894 - loss 0.26560972 - time (sec): 5.62 - samples/sec: 6220.58 - lr: 0.000026 - momentum: 0.000000
2023-10-18 17:41:26,014 epoch 6 - iter 445/894 - loss 0.27644281 - time (sec): 6.98 - samples/sec: 6234.12 - lr: 0.000025 - momentum: 0.000000
2023-10-18 17:41:27,384 epoch 6 - iter 534/894 - loss 0.27683306 - time (sec): 8.35 - samples/sec: 6205.24 - lr: 0.000024 - momentum: 0.000000
2023-10-18 17:41:28,745 epoch 6 - iter 623/894 - loss 0.27738781 - time (sec): 9.71 - samples/sec: 6201.08 - lr: 0.000024 - momentum: 0.000000
2023-10-18 17:41:30,134 epoch 6 - iter 712/894 - loss 0.27549257 - time (sec): 11.10 - samples/sec: 6217.29 - lr: 0.000023 - momentum: 0.000000
2023-10-18 17:41:31,587 epoch 6 - iter 801/894 - loss 0.27684533 - time (sec): 12.55 - samples/sec: 6196.98 - lr: 0.000023 - momentum: 0.000000
2023-10-18 17:41:32,991 epoch 6 - iter 890/894 - loss 0.27758019 - time (sec): 13.95 - samples/sec: 6178.48 - lr: 0.000022 - momentum: 0.000000
2023-10-18 17:41:33,050 ----------------------------------------------------------------------------------------------------
2023-10-18 17:41:33,050 EPOCH 6 done: loss 0.2773 - lr: 0.000022
2023-10-18 17:41:38,288 DEV : loss 0.30895572900772095 - f1-score (micro avg)  0.3675
2023-10-18 17:41:38,314 saving best model
2023-10-18 17:41:38,348 ----------------------------------------------------------------------------------------------------
2023-10-18 17:41:39,740 epoch 7 - iter 89/894 - loss 0.23945029 - time (sec): 1.39 - samples/sec: 6134.96 - lr: 0.000022 - momentum: 0.000000
2023-10-18 17:41:41,103 epoch 7 - iter 178/894 - loss 0.24472136 - time (sec): 2.75 - samples/sec: 6145.87 - lr: 0.000021 - momentum: 0.000000
2023-10-18 17:41:42,459 epoch 7 - iter 267/894 - loss 0.24899507 - time (sec): 4.11 - samples/sec: 6014.48 - lr: 0.000021 - momentum: 0.000000
2023-10-18 17:41:43,845 epoch 7 - iter 356/894 - loss 0.26290285 - time (sec): 5.50 - samples/sec: 6101.12 - lr: 0.000020 - momentum: 0.000000
2023-10-18 17:41:45,225 epoch 7 - iter 445/894 - loss 0.25558011 - time (sec): 6.88 - samples/sec: 6150.11 - lr: 0.000019 - momentum: 0.000000
2023-10-18 17:41:46,604 epoch 7 - iter 534/894 - loss 0.25236895 - time (sec): 8.26 - samples/sec: 6113.46 - lr: 0.000019 - momentum: 0.000000
2023-10-18 17:41:47,974 epoch 7 - iter 623/894 - loss 0.25861698 - time (sec): 9.63 - samples/sec: 6128.98 - lr: 0.000018 - momentum: 0.000000
2023-10-18 17:41:49,409 epoch 7 - iter 712/894 - loss 0.25853236 - time (sec): 11.06 - samples/sec: 6213.92 - lr: 0.000018 - momentum: 0.000000
2023-10-18 17:41:50,809 epoch 7 - iter 801/894 - loss 0.25843522 - time (sec): 12.46 - samples/sec: 6173.81 - lr: 0.000017 - momentum: 0.000000
2023-10-18 17:41:52,190 epoch 7 - iter 890/894 - loss 0.26022956 - time (sec): 13.84 - samples/sec: 6227.19 - lr: 0.000017 - momentum: 0.000000
2023-10-18 17:41:52,253 ----------------------------------------------------------------------------------------------------
2023-10-18 17:41:52,254 EPOCH 7 done: loss 0.2598 - lr: 0.000017
2023-10-18 17:41:57,547 DEV : loss 0.30144089460372925 - f1-score (micro avg)  0.3794
2023-10-18 17:41:57,573 saving best model
2023-10-18 17:41:57,606 ----------------------------------------------------------------------------------------------------
2023-10-18 17:41:58,998 epoch 8 - iter 89/894 - loss 0.25238249 - time (sec): 1.39 - samples/sec: 5901.66 - lr: 0.000016 - momentum: 0.000000
2023-10-18 17:42:00,380 epoch 8 - iter 178/894 - loss 0.24111625 - time (sec): 2.77 - samples/sec: 6095.35 - lr: 0.000016 - momentum: 0.000000
2023-10-18 17:42:01,751 epoch 8 - iter 267/894 - loss 0.24040542 - time (sec): 4.14 - samples/sec: 5994.20 - lr: 0.000015 - momentum: 0.000000
2023-10-18 17:42:03,200 epoch 8 - iter 356/894 - loss 0.24702978 - time (sec): 5.59 - samples/sec: 5934.25 - lr: 0.000014 - momentum: 0.000000
2023-10-18 17:42:04,569 epoch 8 - iter 445/894 - loss 0.24595873 - time (sec): 6.96 - samples/sec: 6008.26 - lr: 0.000014 - momentum: 0.000000
2023-10-18 17:42:05,978 epoch 8 - iter 534/894 - loss 0.25606875 - time (sec): 8.37 - samples/sec: 6045.47 - lr: 0.000013 - momentum: 0.000000
2023-10-18 17:42:07,402 epoch 8 - iter 623/894 - loss 0.24760570 - time (sec): 9.79 - samples/sec: 6192.33 - lr: 0.000013 - momentum: 0.000000
2023-10-18 17:42:08,807 epoch 8 - iter 712/894 - loss 0.25033713 - time (sec): 11.20 - samples/sec: 6203.69 - lr: 0.000012 - momentum: 0.000000
2023-10-18 17:42:10,172 epoch 8 - iter 801/894 - loss 0.25087722 - time (sec): 12.57 - samples/sec: 6206.95 - lr: 0.000012 - momentum: 0.000000
2023-10-18 17:42:11,599 epoch 8 - iter 890/894 - loss 0.24848771 - time (sec): 13.99 - samples/sec: 6164.42 - lr: 0.000011 - momentum: 0.000000
2023-10-18 17:42:11,676 ----------------------------------------------------------------------------------------------------
2023-10-18 17:42:11,676 EPOCH 8 done: loss 0.2483 - lr: 0.000011
2023-10-18 17:42:16,927 DEV : loss 0.29879170656204224 - f1-score (micro avg)  0.3868
2023-10-18 17:42:16,953 saving best model
2023-10-18 17:42:16,987 ----------------------------------------------------------------------------------------------------
2023-10-18 17:42:18,387 epoch 9 - iter 89/894 - loss 0.23595464 - time (sec): 1.40 - samples/sec: 5922.44 - lr: 0.000011 - momentum: 0.000000
2023-10-18 17:42:19,796 epoch 9 - iter 178/894 - loss 0.23156957 - time (sec): 2.81 - samples/sec: 6073.83 - lr: 0.000010 - momentum: 0.000000
2023-10-18 17:42:21,181 epoch 9 - iter 267/894 - loss 0.24432659 - time (sec): 4.19 - samples/sec: 6056.05 - lr: 0.000009 - momentum: 0.000000
2023-10-18 17:42:22,530 epoch 9 - iter 356/894 - loss 0.23683646 - time (sec): 5.54 - samples/sec: 6078.25 - lr: 0.000009 - momentum: 0.000000
2023-10-18 17:42:23,903 epoch 9 - iter 445/894 - loss 0.23601101 - time (sec): 6.91 - samples/sec: 6083.59 - lr: 0.000008 - momentum: 0.000000
2023-10-18 17:42:25,297 epoch 9 - iter 534/894 - loss 0.23146609 - time (sec): 8.31 - samples/sec: 6160.96 - lr: 0.000008 - momentum: 0.000000
2023-10-18 17:42:26,717 epoch 9 - iter 623/894 - loss 0.23681248 - time (sec): 9.73 - samples/sec: 6207.57 - lr: 0.000007 - momentum: 0.000000
2023-10-18 17:42:28,054 epoch 9 - iter 712/894 - loss 0.23875417 - time (sec): 11.07 - samples/sec: 6173.32 - lr: 0.000007 - momentum: 0.000000
2023-10-18 17:42:29,433 epoch 9 - iter 801/894 - loss 0.23968107 - time (sec): 12.45 - samples/sec: 6178.51 - lr: 0.000006 - momentum: 0.000000
2023-10-18 17:42:30,871 epoch 9 - iter 890/894 - loss 0.24025730 - time (sec): 13.88 - samples/sec: 6210.19 - lr: 0.000006 - momentum: 0.000000
2023-10-18 17:42:30,929 ----------------------------------------------------------------------------------------------------
2023-10-18 17:42:30,930 EPOCH 9 done: loss 0.2399 - lr: 0.000006
2023-10-18 17:42:35,884 DEV : loss 0.30229300260543823 - f1-score (micro avg)  0.3947
2023-10-18 17:42:35,911 saving best model
2023-10-18 17:42:35,946 ----------------------------------------------------------------------------------------------------
2023-10-18 17:42:37,286 epoch 10 - iter 89/894 - loss 0.23297878 - time (sec): 1.34 - samples/sec: 5957.31 - lr: 0.000005 - momentum: 0.000000
2023-10-18 17:42:38,671 epoch 10 - iter 178/894 - loss 0.21576070 - time (sec): 2.72 - samples/sec: 6349.89 - lr: 0.000004 - momentum: 0.000000
2023-10-18 17:42:40,035 epoch 10 - iter 267/894 - loss 0.22503277 - time (sec): 4.09 - samples/sec: 6305.28 - lr: 0.000004 - momentum: 0.000000
2023-10-18 17:42:41,408 epoch 10 - iter 356/894 - loss 0.23222666 - time (sec): 5.46 - samples/sec: 6276.33 - lr: 0.000003 - momentum: 0.000000
2023-10-18 17:42:42,826 epoch 10 - iter 445/894 - loss 0.23341935 - time (sec): 6.88 - samples/sec: 6380.28 - lr: 0.000003 - momentum: 0.000000
2023-10-18 17:42:44,561 epoch 10 - iter 534/894 - loss 0.23166851 - time (sec): 8.61 - samples/sec: 6073.29 - lr: 0.000002 - momentum: 0.000000
2023-10-18 17:42:45,993 epoch 10 - iter 623/894 - loss 0.23662064 - time (sec): 10.05 - samples/sec: 6036.84 - lr: 0.000002 - momentum: 0.000000
2023-10-18 17:42:47,357 epoch 10 - iter 712/894 - loss 0.23735465 - time (sec): 11.41 - samples/sec: 6051.71 - lr: 0.000001 - momentum: 0.000000
2023-10-18 17:42:48,742 epoch 10 - iter 801/894 - loss 0.23696194 - time (sec): 12.80 - samples/sec: 6066.99 - lr: 0.000001 - momentum: 0.000000
2023-10-18 17:42:50,194 epoch 10 - iter 890/894 - loss 0.23560390 - time (sec): 14.25 - samples/sec: 6056.66 - lr: 0.000000 - momentum: 0.000000
2023-10-18 17:42:50,255 ----------------------------------------------------------------------------------------------------
2023-10-18 17:42:50,255 EPOCH 10 done: loss 0.2359 - lr: 0.000000
2023-10-18 17:42:55,223 DEV : loss 0.3022255003452301 - f1-score (micro avg)  0.393
2023-10-18 17:42:55,281 ----------------------------------------------------------------------------------------------------
2023-10-18 17:42:55,281 Loading model from best epoch ...
2023-10-18 17:42:55,359 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-prod, B-prod, E-prod, I-prod, S-time, B-time, E-time, I-time
2023-10-18 17:42:57,662 
Results:
- F-score (micro) 0.3817
- F-score (macro) 0.188
- Accuracy 0.2493

By class:
              precision    recall  f1-score   support

         loc     0.5260    0.5772    0.5504       596
        pers     0.2013    0.2793    0.2340       333
         org     0.0000    0.0000    0.0000       132
        time     0.2143    0.1224    0.1558        49
        prod     0.0000    0.0000    0.0000        66

   micro avg     0.3869    0.3767    0.3817      1176
   macro avg     0.1883    0.1958    0.1880      1176
weighted avg     0.3325    0.3767    0.3517      1176

2023-10-18 17:42:57,662 ----------------------------------------------------------------------------------------------------