Upload folder using huggingface_hub
Browse files- best-model.pt +3 -0
- dev.tsv +0 -0
- loss.tsv +11 -0
- runs/events.out.tfevents.1697650786.46dc0c540dd0.2878.1 +3 -0
- test.tsv +0 -0
- training.log +248 -0
best-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:95393704e4129907cace09ff2c92118b511e16c0caddf89377314cb43d1904ce
|
3 |
+
size 19050210
|
dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 17:40:02 0.0000 1.2874 0.4237 1.0000 0.0023 0.0047 0.0023
|
3 |
+
2 17:40:21 0.0000 0.4465 0.3345 0.4009 0.2181 0.2825 0.1700
|
4 |
+
3 17:40:40 0.0000 0.3646 0.3076 0.3980 0.2869 0.3335 0.2086
|
5 |
+
4 17:41:00 0.0000 0.3266 0.3057 0.3585 0.3307 0.3440 0.2201
|
6 |
+
5 17:41:19 0.0000 0.2971 0.3028 0.3923 0.3190 0.3519 0.2255
|
7 |
+
6 17:41:38 0.0000 0.2773 0.3090 0.4223 0.3253 0.3675 0.2373
|
8 |
+
7 17:41:57 0.0000 0.2598 0.3014 0.4075 0.3550 0.3794 0.2489
|
9 |
+
8 17:42:16 0.0000 0.2483 0.2988 0.3974 0.3769 0.3868 0.2558
|
10 |
+
9 17:42:35 0.0000 0.2399 0.3023 0.4154 0.3761 0.3947 0.2631
|
11 |
+
10 17:42:55 0.0000 0.2359 0.3022 0.4174 0.3714 0.3930 0.2617
|
runs/events.out.tfevents.1697650786.46dc0c540dd0.2878.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:adec8af799c1c3853976d3d84f817e2f9b022d0b81b00108ffdc79f75488b1ce
|
3 |
+
size 502124
|
test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training.log
ADDED
@@ -0,0 +1,248 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-18 17:39:46,413 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-18 17:39:46,413 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(32001, 128)
|
7 |
+
(position_embeddings): Embedding(512, 128)
|
8 |
+
(token_type_embeddings): Embedding(2, 128)
|
9 |
+
(LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-1): 2 x BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=128, out_features=128, bias=True)
|
18 |
+
(key): Linear(in_features=128, out_features=128, bias=True)
|
19 |
+
(value): Linear(in_features=128, out_features=128, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=128, out_features=128, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=128, out_features=512, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=512, out_features=128, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
(pooler): BertPooler(
|
41 |
+
(dense): Linear(in_features=128, out_features=128, bias=True)
|
42 |
+
(activation): Tanh()
|
43 |
+
)
|
44 |
+
)
|
45 |
+
)
|
46 |
+
(locked_dropout): LockedDropout(p=0.5)
|
47 |
+
(linear): Linear(in_features=128, out_features=21, bias=True)
|
48 |
+
(loss_function): CrossEntropyLoss()
|
49 |
+
)"
|
50 |
+
2023-10-18 17:39:46,413 ----------------------------------------------------------------------------------------------------
|
51 |
+
2023-10-18 17:39:46,413 MultiCorpus: 3575 train + 1235 dev + 1266 test sentences
|
52 |
+
- NER_HIPE_2022 Corpus: 3575 train + 1235 dev + 1266 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/de/with_doc_seperator
|
53 |
+
2023-10-18 17:39:46,413 ----------------------------------------------------------------------------------------------------
|
54 |
+
2023-10-18 17:39:46,413 Train: 3575 sentences
|
55 |
+
2023-10-18 17:39:46,413 (train_with_dev=False, train_with_test=False)
|
56 |
+
2023-10-18 17:39:46,413 ----------------------------------------------------------------------------------------------------
|
57 |
+
2023-10-18 17:39:46,413 Training Params:
|
58 |
+
2023-10-18 17:39:46,414 - learning_rate: "5e-05"
|
59 |
+
2023-10-18 17:39:46,414 - mini_batch_size: "4"
|
60 |
+
2023-10-18 17:39:46,414 - max_epochs: "10"
|
61 |
+
2023-10-18 17:39:46,414 - shuffle: "True"
|
62 |
+
2023-10-18 17:39:46,414 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-10-18 17:39:46,414 Plugins:
|
64 |
+
2023-10-18 17:39:46,414 - TensorboardLogger
|
65 |
+
2023-10-18 17:39:46,414 - LinearScheduler | warmup_fraction: '0.1'
|
66 |
+
2023-10-18 17:39:46,414 ----------------------------------------------------------------------------------------------------
|
67 |
+
2023-10-18 17:39:46,414 Final evaluation on model from best epoch (best-model.pt)
|
68 |
+
2023-10-18 17:39:46,414 - metric: "('micro avg', 'f1-score')"
|
69 |
+
2023-10-18 17:39:46,414 ----------------------------------------------------------------------------------------------------
|
70 |
+
2023-10-18 17:39:46,414 Computation:
|
71 |
+
2023-10-18 17:39:46,414 - compute on device: cuda:0
|
72 |
+
2023-10-18 17:39:46,414 - embedding storage: none
|
73 |
+
2023-10-18 17:39:46,414 ----------------------------------------------------------------------------------------------------
|
74 |
+
2023-10-18 17:39:46,414 Model training base path: "hmbench-hipe2020/de-dbmdz/bert-tiny-historic-multilingual-cased-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1"
|
75 |
+
2023-10-18 17:39:46,414 ----------------------------------------------------------------------------------------------------
|
76 |
+
2023-10-18 17:39:46,414 ----------------------------------------------------------------------------------------------------
|
77 |
+
2023-10-18 17:39:46,414 Logging anything other than scalars to TensorBoard is currently not supported.
|
78 |
+
2023-10-18 17:39:47,622 epoch 1 - iter 89/894 - loss 3.56088883 - time (sec): 1.21 - samples/sec: 6861.97 - lr: 0.000005 - momentum: 0.000000
|
79 |
+
2023-10-18 17:39:48,995 epoch 1 - iter 178/894 - loss 3.27510972 - time (sec): 2.58 - samples/sec: 6479.87 - lr: 0.000010 - momentum: 0.000000
|
80 |
+
2023-10-18 17:39:50,373 epoch 1 - iter 267/894 - loss 2.81223450 - time (sec): 3.96 - samples/sec: 6392.20 - lr: 0.000015 - momentum: 0.000000
|
81 |
+
2023-10-18 17:39:51,750 epoch 1 - iter 356/894 - loss 2.34160427 - time (sec): 5.34 - samples/sec: 6341.25 - lr: 0.000020 - momentum: 0.000000
|
82 |
+
2023-10-18 17:39:53,122 epoch 1 - iter 445/894 - loss 1.99483895 - time (sec): 6.71 - samples/sec: 6435.14 - lr: 0.000025 - momentum: 0.000000
|
83 |
+
2023-10-18 17:39:54,518 epoch 1 - iter 534/894 - loss 1.76339110 - time (sec): 8.10 - samples/sec: 6399.97 - lr: 0.000030 - momentum: 0.000000
|
84 |
+
2023-10-18 17:39:55,900 epoch 1 - iter 623/894 - loss 1.60438052 - time (sec): 9.49 - samples/sec: 6363.56 - lr: 0.000035 - momentum: 0.000000
|
85 |
+
2023-10-18 17:39:57,316 epoch 1 - iter 712/894 - loss 1.46822053 - time (sec): 10.90 - samples/sec: 6361.48 - lr: 0.000040 - momentum: 0.000000
|
86 |
+
2023-10-18 17:39:58,713 epoch 1 - iter 801/894 - loss 1.37216087 - time (sec): 12.30 - samples/sec: 6342.23 - lr: 0.000045 - momentum: 0.000000
|
87 |
+
2023-10-18 17:40:00,082 epoch 1 - iter 890/894 - loss 1.29129924 - time (sec): 13.67 - samples/sec: 6295.80 - lr: 0.000050 - momentum: 0.000000
|
88 |
+
2023-10-18 17:40:00,144 ----------------------------------------------------------------------------------------------------
|
89 |
+
2023-10-18 17:40:00,144 EPOCH 1 done: loss 1.2874 - lr: 0.000050
|
90 |
+
2023-10-18 17:40:02,389 DEV : loss 0.42374274134635925 - f1-score (micro avg) 0.0047
|
91 |
+
2023-10-18 17:40:02,417 saving best model
|
92 |
+
2023-10-18 17:40:02,449 ----------------------------------------------------------------------------------------------------
|
93 |
+
2023-10-18 17:40:03,852 epoch 2 - iter 89/894 - loss 0.53456617 - time (sec): 1.40 - samples/sec: 6761.96 - lr: 0.000049 - momentum: 0.000000
|
94 |
+
2023-10-18 17:40:05,224 epoch 2 - iter 178/894 - loss 0.48876177 - time (sec): 2.77 - samples/sec: 6667.46 - lr: 0.000049 - momentum: 0.000000
|
95 |
+
2023-10-18 17:40:06,685 epoch 2 - iter 267/894 - loss 0.48305597 - time (sec): 4.24 - samples/sec: 6520.37 - lr: 0.000048 - momentum: 0.000000
|
96 |
+
2023-10-18 17:40:08,045 epoch 2 - iter 356/894 - loss 0.47711486 - time (sec): 5.60 - samples/sec: 6263.90 - lr: 0.000048 - momentum: 0.000000
|
97 |
+
2023-10-18 17:40:09,415 epoch 2 - iter 445/894 - loss 0.46925640 - time (sec): 6.97 - samples/sec: 6328.63 - lr: 0.000047 - momentum: 0.000000
|
98 |
+
2023-10-18 17:40:10,812 epoch 2 - iter 534/894 - loss 0.45601089 - time (sec): 8.36 - samples/sec: 6251.92 - lr: 0.000047 - momentum: 0.000000
|
99 |
+
2023-10-18 17:40:12,213 epoch 2 - iter 623/894 - loss 0.45694794 - time (sec): 9.76 - samples/sec: 6209.82 - lr: 0.000046 - momentum: 0.000000
|
100 |
+
2023-10-18 17:40:13,604 epoch 2 - iter 712/894 - loss 0.45374120 - time (sec): 11.15 - samples/sec: 6209.76 - lr: 0.000046 - momentum: 0.000000
|
101 |
+
2023-10-18 17:40:14,984 epoch 2 - iter 801/894 - loss 0.45183281 - time (sec): 12.53 - samples/sec: 6213.64 - lr: 0.000045 - momentum: 0.000000
|
102 |
+
2023-10-18 17:40:16,315 epoch 2 - iter 890/894 - loss 0.44611403 - time (sec): 13.87 - samples/sec: 6220.24 - lr: 0.000044 - momentum: 0.000000
|
103 |
+
2023-10-18 17:40:16,371 ----------------------------------------------------------------------------------------------------
|
104 |
+
2023-10-18 17:40:16,371 EPOCH 2 done: loss 0.4465 - lr: 0.000044
|
105 |
+
2023-10-18 17:40:21,629 DEV : loss 0.33446836471557617 - f1-score (micro avg) 0.2825
|
106 |
+
2023-10-18 17:40:21,655 saving best model
|
107 |
+
2023-10-18 17:40:21,692 ----------------------------------------------------------------------------------------------------
|
108 |
+
2023-10-18 17:40:23,074 epoch 3 - iter 89/894 - loss 0.37382829 - time (sec): 1.38 - samples/sec: 5689.22 - lr: 0.000044 - momentum: 0.000000
|
109 |
+
2023-10-18 17:40:24,471 epoch 3 - iter 178/894 - loss 0.38391719 - time (sec): 2.78 - samples/sec: 6001.80 - lr: 0.000043 - momentum: 0.000000
|
110 |
+
2023-10-18 17:40:25,842 epoch 3 - iter 267/894 - loss 0.38351814 - time (sec): 4.15 - samples/sec: 5934.83 - lr: 0.000043 - momentum: 0.000000
|
111 |
+
2023-10-18 17:40:27,227 epoch 3 - iter 356/894 - loss 0.37200370 - time (sec): 5.53 - samples/sec: 6050.91 - lr: 0.000042 - momentum: 0.000000
|
112 |
+
2023-10-18 17:40:28,617 epoch 3 - iter 445/894 - loss 0.36806798 - time (sec): 6.92 - samples/sec: 6106.77 - lr: 0.000042 - momentum: 0.000000
|
113 |
+
2023-10-18 17:40:30,026 epoch 3 - iter 534/894 - loss 0.36726729 - time (sec): 8.33 - samples/sec: 6160.71 - lr: 0.000041 - momentum: 0.000000
|
114 |
+
2023-10-18 17:40:31,399 epoch 3 - iter 623/894 - loss 0.36063396 - time (sec): 9.71 - samples/sec: 6126.60 - lr: 0.000041 - momentum: 0.000000
|
115 |
+
2023-10-18 17:40:32,762 epoch 3 - iter 712/894 - loss 0.36575094 - time (sec): 11.07 - samples/sec: 6135.09 - lr: 0.000040 - momentum: 0.000000
|
116 |
+
2023-10-18 17:40:34,215 epoch 3 - iter 801/894 - loss 0.36442893 - time (sec): 12.52 - samples/sec: 6201.81 - lr: 0.000039 - momentum: 0.000000
|
117 |
+
2023-10-18 17:40:35,641 epoch 3 - iter 890/894 - loss 0.36483048 - time (sec): 13.95 - samples/sec: 6178.05 - lr: 0.000039 - momentum: 0.000000
|
118 |
+
2023-10-18 17:40:35,698 ----------------------------------------------------------------------------------------------------
|
119 |
+
2023-10-18 17:40:35,698 EPOCH 3 done: loss 0.3646 - lr: 0.000039
|
120 |
+
2023-10-18 17:40:40,927 DEV : loss 0.3075636327266693 - f1-score (micro avg) 0.3335
|
121 |
+
2023-10-18 17:40:40,953 saving best model
|
122 |
+
2023-10-18 17:40:40,988 ----------------------------------------------------------------------------------------------------
|
123 |
+
2023-10-18 17:40:42,396 epoch 4 - iter 89/894 - loss 0.33269146 - time (sec): 1.41 - samples/sec: 6501.63 - lr: 0.000038 - momentum: 0.000000
|
124 |
+
2023-10-18 17:40:43,794 epoch 4 - iter 178/894 - loss 0.34094448 - time (sec): 2.81 - samples/sec: 6329.83 - lr: 0.000038 - momentum: 0.000000
|
125 |
+
2023-10-18 17:40:45,184 epoch 4 - iter 267/894 - loss 0.34400084 - time (sec): 4.20 - samples/sec: 6379.06 - lr: 0.000037 - momentum: 0.000000
|
126 |
+
2023-10-18 17:40:46,582 epoch 4 - iter 356/894 - loss 0.33882719 - time (sec): 5.59 - samples/sec: 6391.37 - lr: 0.000037 - momentum: 0.000000
|
127 |
+
2023-10-18 17:40:47,931 epoch 4 - iter 445/894 - loss 0.33813656 - time (sec): 6.94 - samples/sec: 6345.08 - lr: 0.000036 - momentum: 0.000000
|
128 |
+
2023-10-18 17:40:49,322 epoch 4 - iter 534/894 - loss 0.33235534 - time (sec): 8.33 - samples/sec: 6301.14 - lr: 0.000036 - momentum: 0.000000
|
129 |
+
2023-10-18 17:40:50,663 epoch 4 - iter 623/894 - loss 0.32836804 - time (sec): 9.67 - samples/sec: 6326.35 - lr: 0.000035 - momentum: 0.000000
|
130 |
+
2023-10-18 17:40:51,909 epoch 4 - iter 712/894 - loss 0.32290979 - time (sec): 10.92 - samples/sec: 6372.20 - lr: 0.000034 - momentum: 0.000000
|
131 |
+
2023-10-18 17:40:53,313 epoch 4 - iter 801/894 - loss 0.32823727 - time (sec): 12.32 - samples/sec: 6320.06 - lr: 0.000034 - momentum: 0.000000
|
132 |
+
2023-10-18 17:40:54,663 epoch 4 - iter 890/894 - loss 0.32666126 - time (sec): 13.67 - samples/sec: 6305.84 - lr: 0.000033 - momentum: 0.000000
|
133 |
+
2023-10-18 17:40:54,722 ----------------------------------------------------------------------------------------------------
|
134 |
+
2023-10-18 17:40:54,722 EPOCH 4 done: loss 0.3266 - lr: 0.000033
|
135 |
+
2023-10-18 17:41:00,006 DEV : loss 0.3056620657444 - f1-score (micro avg) 0.344
|
136 |
+
2023-10-18 17:41:00,032 saving best model
|
137 |
+
2023-10-18 17:41:00,066 ----------------------------------------------------------------------------------------------------
|
138 |
+
2023-10-18 17:41:01,447 epoch 5 - iter 89/894 - loss 0.28380145 - time (sec): 1.38 - samples/sec: 5916.31 - lr: 0.000033 - momentum: 0.000000
|
139 |
+
2023-10-18 17:41:02,817 epoch 5 - iter 178/894 - loss 0.30119921 - time (sec): 2.75 - samples/sec: 5831.65 - lr: 0.000032 - momentum: 0.000000
|
140 |
+
2023-10-18 17:41:04,183 epoch 5 - iter 267/894 - loss 0.28339258 - time (sec): 4.12 - samples/sec: 5840.96 - lr: 0.000032 - momentum: 0.000000
|
141 |
+
2023-10-18 17:41:05,570 epoch 5 - iter 356/894 - loss 0.28951457 - time (sec): 5.50 - samples/sec: 6113.84 - lr: 0.000031 - momentum: 0.000000
|
142 |
+
2023-10-18 17:41:06,973 epoch 5 - iter 445/894 - loss 0.28772870 - time (sec): 6.91 - samples/sec: 6168.89 - lr: 0.000031 - momentum: 0.000000
|
143 |
+
2023-10-18 17:41:08,411 epoch 5 - iter 534/894 - loss 0.28686799 - time (sec): 8.34 - samples/sec: 6214.59 - lr: 0.000030 - momentum: 0.000000
|
144 |
+
2023-10-18 17:41:09,777 epoch 5 - iter 623/894 - loss 0.28834965 - time (sec): 9.71 - samples/sec: 6237.61 - lr: 0.000029 - momentum: 0.000000
|
145 |
+
2023-10-18 17:41:11,142 epoch 5 - iter 712/894 - loss 0.29652767 - time (sec): 11.08 - samples/sec: 6243.32 - lr: 0.000029 - momentum: 0.000000
|
146 |
+
2023-10-18 17:41:12,534 epoch 5 - iter 801/894 - loss 0.29303123 - time (sec): 12.47 - samples/sec: 6200.43 - lr: 0.000028 - momentum: 0.000000
|
147 |
+
2023-10-18 17:41:13,939 epoch 5 - iter 890/894 - loss 0.29497246 - time (sec): 13.87 - samples/sec: 6214.23 - lr: 0.000028 - momentum: 0.000000
|
148 |
+
2023-10-18 17:41:13,998 ----------------------------------------------------------------------------------------------------
|
149 |
+
2023-10-18 17:41:13,998 EPOCH 5 done: loss 0.2971 - lr: 0.000028
|
150 |
+
2023-10-18 17:41:18,978 DEV : loss 0.3028002083301544 - f1-score (micro avg) 0.3519
|
151 |
+
2023-10-18 17:41:19,003 saving best model
|
152 |
+
2023-10-18 17:41:19,038 ----------------------------------------------------------------------------------------------------
|
153 |
+
2023-10-18 17:41:20,430 epoch 6 - iter 89/894 - loss 0.30126272 - time (sec): 1.39 - samples/sec: 6024.34 - lr: 0.000027 - momentum: 0.000000
|
154 |
+
2023-10-18 17:41:21,869 epoch 6 - iter 178/894 - loss 0.27254140 - time (sec): 2.83 - samples/sec: 6564.55 - lr: 0.000027 - momentum: 0.000000
|
155 |
+
2023-10-18 17:41:23,268 epoch 6 - iter 267/894 - loss 0.25649955 - time (sec): 4.23 - samples/sec: 6363.86 - lr: 0.000026 - momentum: 0.000000
|
156 |
+
2023-10-18 17:41:24,660 epoch 6 - iter 356/894 - loss 0.26560972 - time (sec): 5.62 - samples/sec: 6220.58 - lr: 0.000026 - momentum: 0.000000
|
157 |
+
2023-10-18 17:41:26,014 epoch 6 - iter 445/894 - loss 0.27644281 - time (sec): 6.98 - samples/sec: 6234.12 - lr: 0.000025 - momentum: 0.000000
|
158 |
+
2023-10-18 17:41:27,384 epoch 6 - iter 534/894 - loss 0.27683306 - time (sec): 8.35 - samples/sec: 6205.24 - lr: 0.000024 - momentum: 0.000000
|
159 |
+
2023-10-18 17:41:28,745 epoch 6 - iter 623/894 - loss 0.27738781 - time (sec): 9.71 - samples/sec: 6201.08 - lr: 0.000024 - momentum: 0.000000
|
160 |
+
2023-10-18 17:41:30,134 epoch 6 - iter 712/894 - loss 0.27549257 - time (sec): 11.10 - samples/sec: 6217.29 - lr: 0.000023 - momentum: 0.000000
|
161 |
+
2023-10-18 17:41:31,587 epoch 6 - iter 801/894 - loss 0.27684533 - time (sec): 12.55 - samples/sec: 6196.98 - lr: 0.000023 - momentum: 0.000000
|
162 |
+
2023-10-18 17:41:32,991 epoch 6 - iter 890/894 - loss 0.27758019 - time (sec): 13.95 - samples/sec: 6178.48 - lr: 0.000022 - momentum: 0.000000
|
163 |
+
2023-10-18 17:41:33,050 ----------------------------------------------------------------------------------------------------
|
164 |
+
2023-10-18 17:41:33,050 EPOCH 6 done: loss 0.2773 - lr: 0.000022
|
165 |
+
2023-10-18 17:41:38,288 DEV : loss 0.30895572900772095 - f1-score (micro avg) 0.3675
|
166 |
+
2023-10-18 17:41:38,314 saving best model
|
167 |
+
2023-10-18 17:41:38,348 ----------------------------------------------------------------------------------------------------
|
168 |
+
2023-10-18 17:41:39,740 epoch 7 - iter 89/894 - loss 0.23945029 - time (sec): 1.39 - samples/sec: 6134.96 - lr: 0.000022 - momentum: 0.000000
|
169 |
+
2023-10-18 17:41:41,103 epoch 7 - iter 178/894 - loss 0.24472136 - time (sec): 2.75 - samples/sec: 6145.87 - lr: 0.000021 - momentum: 0.000000
|
170 |
+
2023-10-18 17:41:42,459 epoch 7 - iter 267/894 - loss 0.24899507 - time (sec): 4.11 - samples/sec: 6014.48 - lr: 0.000021 - momentum: 0.000000
|
171 |
+
2023-10-18 17:41:43,845 epoch 7 - iter 356/894 - loss 0.26290285 - time (sec): 5.50 - samples/sec: 6101.12 - lr: 0.000020 - momentum: 0.000000
|
172 |
+
2023-10-18 17:41:45,225 epoch 7 - iter 445/894 - loss 0.25558011 - time (sec): 6.88 - samples/sec: 6150.11 - lr: 0.000019 - momentum: 0.000000
|
173 |
+
2023-10-18 17:41:46,604 epoch 7 - iter 534/894 - loss 0.25236895 - time (sec): 8.26 - samples/sec: 6113.46 - lr: 0.000019 - momentum: 0.000000
|
174 |
+
2023-10-18 17:41:47,974 epoch 7 - iter 623/894 - loss 0.25861698 - time (sec): 9.63 - samples/sec: 6128.98 - lr: 0.000018 - momentum: 0.000000
|
175 |
+
2023-10-18 17:41:49,409 epoch 7 - iter 712/894 - loss 0.25853236 - time (sec): 11.06 - samples/sec: 6213.92 - lr: 0.000018 - momentum: 0.000000
|
176 |
+
2023-10-18 17:41:50,809 epoch 7 - iter 801/894 - loss 0.25843522 - time (sec): 12.46 - samples/sec: 6173.81 - lr: 0.000017 - momentum: 0.000000
|
177 |
+
2023-10-18 17:41:52,190 epoch 7 - iter 890/894 - loss 0.26022956 - time (sec): 13.84 - samples/sec: 6227.19 - lr: 0.000017 - momentum: 0.000000
|
178 |
+
2023-10-18 17:41:52,253 ----------------------------------------------------------------------------------------------------
|
179 |
+
2023-10-18 17:41:52,254 EPOCH 7 done: loss 0.2598 - lr: 0.000017
|
180 |
+
2023-10-18 17:41:57,547 DEV : loss 0.30144089460372925 - f1-score (micro avg) 0.3794
|
181 |
+
2023-10-18 17:41:57,573 saving best model
|
182 |
+
2023-10-18 17:41:57,606 ----------------------------------------------------------------------------------------------------
|
183 |
+
2023-10-18 17:41:58,998 epoch 8 - iter 89/894 - loss 0.25238249 - time (sec): 1.39 - samples/sec: 5901.66 - lr: 0.000016 - momentum: 0.000000
|
184 |
+
2023-10-18 17:42:00,380 epoch 8 - iter 178/894 - loss 0.24111625 - time (sec): 2.77 - samples/sec: 6095.35 - lr: 0.000016 - momentum: 0.000000
|
185 |
+
2023-10-18 17:42:01,751 epoch 8 - iter 267/894 - loss 0.24040542 - time (sec): 4.14 - samples/sec: 5994.20 - lr: 0.000015 - momentum: 0.000000
|
186 |
+
2023-10-18 17:42:03,200 epoch 8 - iter 356/894 - loss 0.24702978 - time (sec): 5.59 - samples/sec: 5934.25 - lr: 0.000014 - momentum: 0.000000
|
187 |
+
2023-10-18 17:42:04,569 epoch 8 - iter 445/894 - loss 0.24595873 - time (sec): 6.96 - samples/sec: 6008.26 - lr: 0.000014 - momentum: 0.000000
|
188 |
+
2023-10-18 17:42:05,978 epoch 8 - iter 534/894 - loss 0.25606875 - time (sec): 8.37 - samples/sec: 6045.47 - lr: 0.000013 - momentum: 0.000000
|
189 |
+
2023-10-18 17:42:07,402 epoch 8 - iter 623/894 - loss 0.24760570 - time (sec): 9.79 - samples/sec: 6192.33 - lr: 0.000013 - momentum: 0.000000
|
190 |
+
2023-10-18 17:42:08,807 epoch 8 - iter 712/894 - loss 0.25033713 - time (sec): 11.20 - samples/sec: 6203.69 - lr: 0.000012 - momentum: 0.000000
|
191 |
+
2023-10-18 17:42:10,172 epoch 8 - iter 801/894 - loss 0.25087722 - time (sec): 12.57 - samples/sec: 6206.95 - lr: 0.000012 - momentum: 0.000000
|
192 |
+
2023-10-18 17:42:11,599 epoch 8 - iter 890/894 - loss 0.24848771 - time (sec): 13.99 - samples/sec: 6164.42 - lr: 0.000011 - momentum: 0.000000
|
193 |
+
2023-10-18 17:42:11,676 ----------------------------------------------------------------------------------------------------
|
194 |
+
2023-10-18 17:42:11,676 EPOCH 8 done: loss 0.2483 - lr: 0.000011
|
195 |
+
2023-10-18 17:42:16,927 DEV : loss 0.29879170656204224 - f1-score (micro avg) 0.3868
|
196 |
+
2023-10-18 17:42:16,953 saving best model
|
197 |
+
2023-10-18 17:42:16,987 ----------------------------------------------------------------------------------------------------
|
198 |
+
2023-10-18 17:42:18,387 epoch 9 - iter 89/894 - loss 0.23595464 - time (sec): 1.40 - samples/sec: 5922.44 - lr: 0.000011 - momentum: 0.000000
|
199 |
+
2023-10-18 17:42:19,796 epoch 9 - iter 178/894 - loss 0.23156957 - time (sec): 2.81 - samples/sec: 6073.83 - lr: 0.000010 - momentum: 0.000000
|
200 |
+
2023-10-18 17:42:21,181 epoch 9 - iter 267/894 - loss 0.24432659 - time (sec): 4.19 - samples/sec: 6056.05 - lr: 0.000009 - momentum: 0.000000
|
201 |
+
2023-10-18 17:42:22,530 epoch 9 - iter 356/894 - loss 0.23683646 - time (sec): 5.54 - samples/sec: 6078.25 - lr: 0.000009 - momentum: 0.000000
|
202 |
+
2023-10-18 17:42:23,903 epoch 9 - iter 445/894 - loss 0.23601101 - time (sec): 6.91 - samples/sec: 6083.59 - lr: 0.000008 - momentum: 0.000000
|
203 |
+
2023-10-18 17:42:25,297 epoch 9 - iter 534/894 - loss 0.23146609 - time (sec): 8.31 - samples/sec: 6160.96 - lr: 0.000008 - momentum: 0.000000
|
204 |
+
2023-10-18 17:42:26,717 epoch 9 - iter 623/894 - loss 0.23681248 - time (sec): 9.73 - samples/sec: 6207.57 - lr: 0.000007 - momentum: 0.000000
|
205 |
+
2023-10-18 17:42:28,054 epoch 9 - iter 712/894 - loss 0.23875417 - time (sec): 11.07 - samples/sec: 6173.32 - lr: 0.000007 - momentum: 0.000000
|
206 |
+
2023-10-18 17:42:29,433 epoch 9 - iter 801/894 - loss 0.23968107 - time (sec): 12.45 - samples/sec: 6178.51 - lr: 0.000006 - momentum: 0.000000
|
207 |
+
2023-10-18 17:42:30,871 epoch 9 - iter 890/894 - loss 0.24025730 - time (sec): 13.88 - samples/sec: 6210.19 - lr: 0.000006 - momentum: 0.000000
|
208 |
+
2023-10-18 17:42:30,929 ----------------------------------------------------------------------------------------------------
|
209 |
+
2023-10-18 17:42:30,930 EPOCH 9 done: loss 0.2399 - lr: 0.000006
|
210 |
+
2023-10-18 17:42:35,884 DEV : loss 0.30229300260543823 - f1-score (micro avg) 0.3947
|
211 |
+
2023-10-18 17:42:35,911 saving best model
|
212 |
+
2023-10-18 17:42:35,946 ----------------------------------------------------------------------------------------------------
|
213 |
+
2023-10-18 17:42:37,286 epoch 10 - iter 89/894 - loss 0.23297878 - time (sec): 1.34 - samples/sec: 5957.31 - lr: 0.000005 - momentum: 0.000000
|
214 |
+
2023-10-18 17:42:38,671 epoch 10 - iter 178/894 - loss 0.21576070 - time (sec): 2.72 - samples/sec: 6349.89 - lr: 0.000004 - momentum: 0.000000
|
215 |
+
2023-10-18 17:42:40,035 epoch 10 - iter 267/894 - loss 0.22503277 - time (sec): 4.09 - samples/sec: 6305.28 - lr: 0.000004 - momentum: 0.000000
|
216 |
+
2023-10-18 17:42:41,408 epoch 10 - iter 356/894 - loss 0.23222666 - time (sec): 5.46 - samples/sec: 6276.33 - lr: 0.000003 - momentum: 0.000000
|
217 |
+
2023-10-18 17:42:42,826 epoch 10 - iter 445/894 - loss 0.23341935 - time (sec): 6.88 - samples/sec: 6380.28 - lr: 0.000003 - momentum: 0.000000
|
218 |
+
2023-10-18 17:42:44,561 epoch 10 - iter 534/894 - loss 0.23166851 - time (sec): 8.61 - samples/sec: 6073.29 - lr: 0.000002 - momentum: 0.000000
|
219 |
+
2023-10-18 17:42:45,993 epoch 10 - iter 623/894 - loss 0.23662064 - time (sec): 10.05 - samples/sec: 6036.84 - lr: 0.000002 - momentum: 0.000000
|
220 |
+
2023-10-18 17:42:47,357 epoch 10 - iter 712/894 - loss 0.23735465 - time (sec): 11.41 - samples/sec: 6051.71 - lr: 0.000001 - momentum: 0.000000
|
221 |
+
2023-10-18 17:42:48,742 epoch 10 - iter 801/894 - loss 0.23696194 - time (sec): 12.80 - samples/sec: 6066.99 - lr: 0.000001 - momentum: 0.000000
|
222 |
+
2023-10-18 17:42:50,194 epoch 10 - iter 890/894 - loss 0.23560390 - time (sec): 14.25 - samples/sec: 6056.66 - lr: 0.000000 - momentum: 0.000000
|
223 |
+
2023-10-18 17:42:50,255 ----------------------------------------------------------------------------------------------------
|
224 |
+
2023-10-18 17:42:50,255 EPOCH 10 done: loss 0.2359 - lr: 0.000000
|
225 |
+
2023-10-18 17:42:55,223 DEV : loss 0.3022255003452301 - f1-score (micro avg) 0.393
|
226 |
+
2023-10-18 17:42:55,281 ----------------------------------------------------------------------------------------------------
|
227 |
+
2023-10-18 17:42:55,281 Loading model from best epoch ...
|
228 |
+
2023-10-18 17:42:55,359 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-prod, B-prod, E-prod, I-prod, S-time, B-time, E-time, I-time
|
229 |
+
2023-10-18 17:42:57,662
|
230 |
+
Results:
|
231 |
+
- F-score (micro) 0.3817
|
232 |
+
- F-score (macro) 0.188
|
233 |
+
- Accuracy 0.2493
|
234 |
+
|
235 |
+
By class:
|
236 |
+
precision recall f1-score support
|
237 |
+
|
238 |
+
loc 0.5260 0.5772 0.5504 596
|
239 |
+
pers 0.2013 0.2793 0.2340 333
|
240 |
+
org 0.0000 0.0000 0.0000 132
|
241 |
+
time 0.2143 0.1224 0.1558 49
|
242 |
+
prod 0.0000 0.0000 0.0000 66
|
243 |
+
|
244 |
+
micro avg 0.3869 0.3767 0.3817 1176
|
245 |
+
macro avg 0.1883 0.1958 0.1880 1176
|
246 |
+
weighted avg 0.3325 0.3767 0.3517 1176
|
247 |
+
|
248 |
+
2023-10-18 17:42:57,662 ----------------------------------------------------------------------------------------------------
|