2023-10-18 17:39:46,413 ---------------------------------------------------------------------------------------------------- 2023-10-18 17:39:46,413 Model: "SequenceTagger( (embeddings): TransformerWordEmbeddings( (model): BertModel( (embeddings): BertEmbeddings( (word_embeddings): Embedding(32001, 128) (position_embeddings): Embedding(512, 128) (token_type_embeddings): Embedding(2, 128) (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) (encoder): BertEncoder( (layer): ModuleList( (0-1): 2 x BertLayer( (attention): BertAttention( (self): BertSelfAttention( (query): Linear(in_features=128, out_features=128, bias=True) (key): Linear(in_features=128, out_features=128, bias=True) (value): Linear(in_features=128, out_features=128, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) (output): BertSelfOutput( (dense): Linear(in_features=128, out_features=128, bias=True) (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (intermediate): BertIntermediate( (dense): Linear(in_features=128, out_features=512, bias=True) (intermediate_act_fn): GELUActivation() ) (output): BertOutput( (dense): Linear(in_features=512, out_features=128, bias=True) (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) ) ) (pooler): BertPooler( (dense): Linear(in_features=128, out_features=128, bias=True) (activation): Tanh() ) ) ) (locked_dropout): LockedDropout(p=0.5) (linear): Linear(in_features=128, out_features=21, bias=True) (loss_function): CrossEntropyLoss() )" 2023-10-18 17:39:46,413 ---------------------------------------------------------------------------------------------------- 2023-10-18 17:39:46,413 MultiCorpus: 3575 train + 1235 dev + 1266 test sentences - NER_HIPE_2022 Corpus: 3575 train + 1235 dev + 1266 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/de/with_doc_seperator 2023-10-18 17:39:46,413 ---------------------------------------------------------------------------------------------------- 2023-10-18 17:39:46,413 Train: 3575 sentences 2023-10-18 17:39:46,413 (train_with_dev=False, train_with_test=False) 2023-10-18 17:39:46,413 ---------------------------------------------------------------------------------------------------- 2023-10-18 17:39:46,413 Training Params: 2023-10-18 17:39:46,414 - learning_rate: "5e-05" 2023-10-18 17:39:46,414 - mini_batch_size: "4" 2023-10-18 17:39:46,414 - max_epochs: "10" 2023-10-18 17:39:46,414 - shuffle: "True" 2023-10-18 17:39:46,414 ---------------------------------------------------------------------------------------------------- 2023-10-18 17:39:46,414 Plugins: 2023-10-18 17:39:46,414 - TensorboardLogger 2023-10-18 17:39:46,414 - LinearScheduler | warmup_fraction: '0.1' 2023-10-18 17:39:46,414 ---------------------------------------------------------------------------------------------------- 2023-10-18 17:39:46,414 Final evaluation on model from best epoch (best-model.pt) 2023-10-18 17:39:46,414 - metric: "('micro avg', 'f1-score')" 2023-10-18 17:39:46,414 ---------------------------------------------------------------------------------------------------- 2023-10-18 17:39:46,414 Computation: 2023-10-18 17:39:46,414 - compute on device: cuda:0 2023-10-18 17:39:46,414 - embedding storage: none 2023-10-18 17:39:46,414 ---------------------------------------------------------------------------------------------------- 2023-10-18 17:39:46,414 Model training base path: "hmbench-hipe2020/de-dbmdz/bert-tiny-historic-multilingual-cased-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1" 2023-10-18 17:39:46,414 ---------------------------------------------------------------------------------------------------- 2023-10-18 17:39:46,414 ---------------------------------------------------------------------------------------------------- 2023-10-18 17:39:46,414 Logging anything other than scalars to TensorBoard is currently not supported. 2023-10-18 17:39:47,622 epoch 1 - iter 89/894 - loss 3.56088883 - time (sec): 1.21 - samples/sec: 6861.97 - lr: 0.000005 - momentum: 0.000000 2023-10-18 17:39:48,995 epoch 1 - iter 178/894 - loss 3.27510972 - time (sec): 2.58 - samples/sec: 6479.87 - lr: 0.000010 - momentum: 0.000000 2023-10-18 17:39:50,373 epoch 1 - iter 267/894 - loss 2.81223450 - time (sec): 3.96 - samples/sec: 6392.20 - lr: 0.000015 - momentum: 0.000000 2023-10-18 17:39:51,750 epoch 1 - iter 356/894 - loss 2.34160427 - time (sec): 5.34 - samples/sec: 6341.25 - lr: 0.000020 - momentum: 0.000000 2023-10-18 17:39:53,122 epoch 1 - iter 445/894 - loss 1.99483895 - time (sec): 6.71 - samples/sec: 6435.14 - lr: 0.000025 - momentum: 0.000000 2023-10-18 17:39:54,518 epoch 1 - iter 534/894 - loss 1.76339110 - time (sec): 8.10 - samples/sec: 6399.97 - lr: 0.000030 - momentum: 0.000000 2023-10-18 17:39:55,900 epoch 1 - iter 623/894 - loss 1.60438052 - time (sec): 9.49 - samples/sec: 6363.56 - lr: 0.000035 - momentum: 0.000000 2023-10-18 17:39:57,316 epoch 1 - iter 712/894 - loss 1.46822053 - time (sec): 10.90 - samples/sec: 6361.48 - lr: 0.000040 - momentum: 0.000000 2023-10-18 17:39:58,713 epoch 1 - iter 801/894 - loss 1.37216087 - time (sec): 12.30 - samples/sec: 6342.23 - lr: 0.000045 - momentum: 0.000000 2023-10-18 17:40:00,082 epoch 1 - iter 890/894 - loss 1.29129924 - time (sec): 13.67 - samples/sec: 6295.80 - lr: 0.000050 - momentum: 0.000000 2023-10-18 17:40:00,144 ---------------------------------------------------------------------------------------------------- 2023-10-18 17:40:00,144 EPOCH 1 done: loss 1.2874 - lr: 0.000050 2023-10-18 17:40:02,389 DEV : loss 0.42374274134635925 - f1-score (micro avg) 0.0047 2023-10-18 17:40:02,417 saving best model 2023-10-18 17:40:02,449 ---------------------------------------------------------------------------------------------------- 2023-10-18 17:40:03,852 epoch 2 - iter 89/894 - loss 0.53456617 - time (sec): 1.40 - samples/sec: 6761.96 - lr: 0.000049 - momentum: 0.000000 2023-10-18 17:40:05,224 epoch 2 - iter 178/894 - loss 0.48876177 - time (sec): 2.77 - samples/sec: 6667.46 - lr: 0.000049 - momentum: 0.000000 2023-10-18 17:40:06,685 epoch 2 - iter 267/894 - loss 0.48305597 - time (sec): 4.24 - samples/sec: 6520.37 - lr: 0.000048 - momentum: 0.000000 2023-10-18 17:40:08,045 epoch 2 - iter 356/894 - loss 0.47711486 - time (sec): 5.60 - samples/sec: 6263.90 - lr: 0.000048 - momentum: 0.000000 2023-10-18 17:40:09,415 epoch 2 - iter 445/894 - loss 0.46925640 - time (sec): 6.97 - samples/sec: 6328.63 - lr: 0.000047 - momentum: 0.000000 2023-10-18 17:40:10,812 epoch 2 - iter 534/894 - loss 0.45601089 - time (sec): 8.36 - samples/sec: 6251.92 - lr: 0.000047 - momentum: 0.000000 2023-10-18 17:40:12,213 epoch 2 - iter 623/894 - loss 0.45694794 - time (sec): 9.76 - samples/sec: 6209.82 - lr: 0.000046 - momentum: 0.000000 2023-10-18 17:40:13,604 epoch 2 - iter 712/894 - loss 0.45374120 - time (sec): 11.15 - samples/sec: 6209.76 - lr: 0.000046 - momentum: 0.000000 2023-10-18 17:40:14,984 epoch 2 - iter 801/894 - loss 0.45183281 - time (sec): 12.53 - samples/sec: 6213.64 - lr: 0.000045 - momentum: 0.000000 2023-10-18 17:40:16,315 epoch 2 - iter 890/894 - loss 0.44611403 - time (sec): 13.87 - samples/sec: 6220.24 - lr: 0.000044 - momentum: 0.000000 2023-10-18 17:40:16,371 ---------------------------------------------------------------------------------------------------- 2023-10-18 17:40:16,371 EPOCH 2 done: loss 0.4465 - lr: 0.000044 2023-10-18 17:40:21,629 DEV : loss 0.33446836471557617 - f1-score (micro avg) 0.2825 2023-10-18 17:40:21,655 saving best model 2023-10-18 17:40:21,692 ---------------------------------------------------------------------------------------------------- 2023-10-18 17:40:23,074 epoch 3 - iter 89/894 - loss 0.37382829 - time (sec): 1.38 - samples/sec: 5689.22 - lr: 0.000044 - momentum: 0.000000 2023-10-18 17:40:24,471 epoch 3 - iter 178/894 - loss 0.38391719 - time (sec): 2.78 - samples/sec: 6001.80 - lr: 0.000043 - momentum: 0.000000 2023-10-18 17:40:25,842 epoch 3 - iter 267/894 - loss 0.38351814 - time (sec): 4.15 - samples/sec: 5934.83 - lr: 0.000043 - momentum: 0.000000 2023-10-18 17:40:27,227 epoch 3 - iter 356/894 - loss 0.37200370 - time (sec): 5.53 - samples/sec: 6050.91 - lr: 0.000042 - momentum: 0.000000 2023-10-18 17:40:28,617 epoch 3 - iter 445/894 - loss 0.36806798 - time (sec): 6.92 - samples/sec: 6106.77 - lr: 0.000042 - momentum: 0.000000 2023-10-18 17:40:30,026 epoch 3 - iter 534/894 - loss 0.36726729 - time (sec): 8.33 - samples/sec: 6160.71 - lr: 0.000041 - momentum: 0.000000 2023-10-18 17:40:31,399 epoch 3 - iter 623/894 - loss 0.36063396 - time (sec): 9.71 - samples/sec: 6126.60 - lr: 0.000041 - momentum: 0.000000 2023-10-18 17:40:32,762 epoch 3 - iter 712/894 - loss 0.36575094 - time (sec): 11.07 - samples/sec: 6135.09 - lr: 0.000040 - momentum: 0.000000 2023-10-18 17:40:34,215 epoch 3 - iter 801/894 - loss 0.36442893 - time (sec): 12.52 - samples/sec: 6201.81 - lr: 0.000039 - momentum: 0.000000 2023-10-18 17:40:35,641 epoch 3 - iter 890/894 - loss 0.36483048 - time (sec): 13.95 - samples/sec: 6178.05 - lr: 0.000039 - momentum: 0.000000 2023-10-18 17:40:35,698 ---------------------------------------------------------------------------------------------------- 2023-10-18 17:40:35,698 EPOCH 3 done: loss 0.3646 - lr: 0.000039 2023-10-18 17:40:40,927 DEV : loss 0.3075636327266693 - f1-score (micro avg) 0.3335 2023-10-18 17:40:40,953 saving best model 2023-10-18 17:40:40,988 ---------------------------------------------------------------------------------------------------- 2023-10-18 17:40:42,396 epoch 4 - iter 89/894 - loss 0.33269146 - time (sec): 1.41 - samples/sec: 6501.63 - lr: 0.000038 - momentum: 0.000000 2023-10-18 17:40:43,794 epoch 4 - iter 178/894 - loss 0.34094448 - time (sec): 2.81 - samples/sec: 6329.83 - lr: 0.000038 - momentum: 0.000000 2023-10-18 17:40:45,184 epoch 4 - iter 267/894 - loss 0.34400084 - time (sec): 4.20 - samples/sec: 6379.06 - lr: 0.000037 - momentum: 0.000000 2023-10-18 17:40:46,582 epoch 4 - iter 356/894 - loss 0.33882719 - time (sec): 5.59 - samples/sec: 6391.37 - lr: 0.000037 - momentum: 0.000000 2023-10-18 17:40:47,931 epoch 4 - iter 445/894 - loss 0.33813656 - time (sec): 6.94 - samples/sec: 6345.08 - lr: 0.000036 - momentum: 0.000000 2023-10-18 17:40:49,322 epoch 4 - iter 534/894 - loss 0.33235534 - time (sec): 8.33 - samples/sec: 6301.14 - lr: 0.000036 - momentum: 0.000000 2023-10-18 17:40:50,663 epoch 4 - iter 623/894 - loss 0.32836804 - time (sec): 9.67 - samples/sec: 6326.35 - lr: 0.000035 - momentum: 0.000000 2023-10-18 17:40:51,909 epoch 4 - iter 712/894 - loss 0.32290979 - time (sec): 10.92 - samples/sec: 6372.20 - lr: 0.000034 - momentum: 0.000000 2023-10-18 17:40:53,313 epoch 4 - iter 801/894 - loss 0.32823727 - time (sec): 12.32 - samples/sec: 6320.06 - lr: 0.000034 - momentum: 0.000000 2023-10-18 17:40:54,663 epoch 4 - iter 890/894 - loss 0.32666126 - time (sec): 13.67 - samples/sec: 6305.84 - lr: 0.000033 - momentum: 0.000000 2023-10-18 17:40:54,722 ---------------------------------------------------------------------------------------------------- 2023-10-18 17:40:54,722 EPOCH 4 done: loss 0.3266 - lr: 0.000033 2023-10-18 17:41:00,006 DEV : loss 0.3056620657444 - f1-score (micro avg) 0.344 2023-10-18 17:41:00,032 saving best model 2023-10-18 17:41:00,066 ---------------------------------------------------------------------------------------------------- 2023-10-18 17:41:01,447 epoch 5 - iter 89/894 - loss 0.28380145 - time (sec): 1.38 - samples/sec: 5916.31 - lr: 0.000033 - momentum: 0.000000 2023-10-18 17:41:02,817 epoch 5 - iter 178/894 - loss 0.30119921 - time (sec): 2.75 - samples/sec: 5831.65 - lr: 0.000032 - momentum: 0.000000 2023-10-18 17:41:04,183 epoch 5 - iter 267/894 - loss 0.28339258 - time (sec): 4.12 - samples/sec: 5840.96 - lr: 0.000032 - momentum: 0.000000 2023-10-18 17:41:05,570 epoch 5 - iter 356/894 - loss 0.28951457 - time (sec): 5.50 - samples/sec: 6113.84 - lr: 0.000031 - momentum: 0.000000 2023-10-18 17:41:06,973 epoch 5 - iter 445/894 - loss 0.28772870 - time (sec): 6.91 - samples/sec: 6168.89 - lr: 0.000031 - momentum: 0.000000 2023-10-18 17:41:08,411 epoch 5 - iter 534/894 - loss 0.28686799 - time (sec): 8.34 - samples/sec: 6214.59 - lr: 0.000030 - momentum: 0.000000 2023-10-18 17:41:09,777 epoch 5 - iter 623/894 - loss 0.28834965 - time (sec): 9.71 - samples/sec: 6237.61 - lr: 0.000029 - momentum: 0.000000 2023-10-18 17:41:11,142 epoch 5 - iter 712/894 - loss 0.29652767 - time (sec): 11.08 - samples/sec: 6243.32 - lr: 0.000029 - momentum: 0.000000 2023-10-18 17:41:12,534 epoch 5 - iter 801/894 - loss 0.29303123 - time (sec): 12.47 - samples/sec: 6200.43 - lr: 0.000028 - momentum: 0.000000 2023-10-18 17:41:13,939 epoch 5 - iter 890/894 - loss 0.29497246 - time (sec): 13.87 - samples/sec: 6214.23 - lr: 0.000028 - momentum: 0.000000 2023-10-18 17:41:13,998 ---------------------------------------------------------------------------------------------------- 2023-10-18 17:41:13,998 EPOCH 5 done: loss 0.2971 - lr: 0.000028 2023-10-18 17:41:18,978 DEV : loss 0.3028002083301544 - f1-score (micro avg) 0.3519 2023-10-18 17:41:19,003 saving best model 2023-10-18 17:41:19,038 ---------------------------------------------------------------------------------------------------- 2023-10-18 17:41:20,430 epoch 6 - iter 89/894 - loss 0.30126272 - time (sec): 1.39 - samples/sec: 6024.34 - lr: 0.000027 - momentum: 0.000000 2023-10-18 17:41:21,869 epoch 6 - iter 178/894 - loss 0.27254140 - time (sec): 2.83 - samples/sec: 6564.55 - lr: 0.000027 - momentum: 0.000000 2023-10-18 17:41:23,268 epoch 6 - iter 267/894 - loss 0.25649955 - time (sec): 4.23 - samples/sec: 6363.86 - lr: 0.000026 - momentum: 0.000000 2023-10-18 17:41:24,660 epoch 6 - iter 356/894 - loss 0.26560972 - time (sec): 5.62 - samples/sec: 6220.58 - lr: 0.000026 - momentum: 0.000000 2023-10-18 17:41:26,014 epoch 6 - iter 445/894 - loss 0.27644281 - time (sec): 6.98 - samples/sec: 6234.12 - lr: 0.000025 - momentum: 0.000000 2023-10-18 17:41:27,384 epoch 6 - iter 534/894 - loss 0.27683306 - time (sec): 8.35 - samples/sec: 6205.24 - lr: 0.000024 - momentum: 0.000000 2023-10-18 17:41:28,745 epoch 6 - iter 623/894 - loss 0.27738781 - time (sec): 9.71 - samples/sec: 6201.08 - lr: 0.000024 - momentum: 0.000000 2023-10-18 17:41:30,134 epoch 6 - iter 712/894 - loss 0.27549257 - time (sec): 11.10 - samples/sec: 6217.29 - lr: 0.000023 - momentum: 0.000000 2023-10-18 17:41:31,587 epoch 6 - iter 801/894 - loss 0.27684533 - time (sec): 12.55 - samples/sec: 6196.98 - lr: 0.000023 - momentum: 0.000000 2023-10-18 17:41:32,991 epoch 6 - iter 890/894 - loss 0.27758019 - time (sec): 13.95 - samples/sec: 6178.48 - lr: 0.000022 - momentum: 0.000000 2023-10-18 17:41:33,050 ---------------------------------------------------------------------------------------------------- 2023-10-18 17:41:33,050 EPOCH 6 done: loss 0.2773 - lr: 0.000022 2023-10-18 17:41:38,288 DEV : loss 0.30895572900772095 - f1-score (micro avg) 0.3675 2023-10-18 17:41:38,314 saving best model 2023-10-18 17:41:38,348 ---------------------------------------------------------------------------------------------------- 2023-10-18 17:41:39,740 epoch 7 - iter 89/894 - loss 0.23945029 - time (sec): 1.39 - samples/sec: 6134.96 - lr: 0.000022 - momentum: 0.000000 2023-10-18 17:41:41,103 epoch 7 - iter 178/894 - loss 0.24472136 - time (sec): 2.75 - samples/sec: 6145.87 - lr: 0.000021 - momentum: 0.000000 2023-10-18 17:41:42,459 epoch 7 - iter 267/894 - loss 0.24899507 - time (sec): 4.11 - samples/sec: 6014.48 - lr: 0.000021 - momentum: 0.000000 2023-10-18 17:41:43,845 epoch 7 - iter 356/894 - loss 0.26290285 - time (sec): 5.50 - samples/sec: 6101.12 - lr: 0.000020 - momentum: 0.000000 2023-10-18 17:41:45,225 epoch 7 - iter 445/894 - loss 0.25558011 - time (sec): 6.88 - samples/sec: 6150.11 - lr: 0.000019 - momentum: 0.000000 2023-10-18 17:41:46,604 epoch 7 - iter 534/894 - loss 0.25236895 - time (sec): 8.26 - samples/sec: 6113.46 - lr: 0.000019 - momentum: 0.000000 2023-10-18 17:41:47,974 epoch 7 - iter 623/894 - loss 0.25861698 - time (sec): 9.63 - samples/sec: 6128.98 - lr: 0.000018 - momentum: 0.000000 2023-10-18 17:41:49,409 epoch 7 - iter 712/894 - loss 0.25853236 - time (sec): 11.06 - samples/sec: 6213.92 - lr: 0.000018 - momentum: 0.000000 2023-10-18 17:41:50,809 epoch 7 - iter 801/894 - loss 0.25843522 - time (sec): 12.46 - samples/sec: 6173.81 - lr: 0.000017 - momentum: 0.000000 2023-10-18 17:41:52,190 epoch 7 - iter 890/894 - loss 0.26022956 - time (sec): 13.84 - samples/sec: 6227.19 - lr: 0.000017 - momentum: 0.000000 2023-10-18 17:41:52,253 ---------------------------------------------------------------------------------------------------- 2023-10-18 17:41:52,254 EPOCH 7 done: loss 0.2598 - lr: 0.000017 2023-10-18 17:41:57,547 DEV : loss 0.30144089460372925 - f1-score (micro avg) 0.3794 2023-10-18 17:41:57,573 saving best model 2023-10-18 17:41:57,606 ---------------------------------------------------------------------------------------------------- 2023-10-18 17:41:58,998 epoch 8 - iter 89/894 - loss 0.25238249 - time (sec): 1.39 - samples/sec: 5901.66 - lr: 0.000016 - momentum: 0.000000 2023-10-18 17:42:00,380 epoch 8 - iter 178/894 - loss 0.24111625 - time (sec): 2.77 - samples/sec: 6095.35 - lr: 0.000016 - momentum: 0.000000 2023-10-18 17:42:01,751 epoch 8 - iter 267/894 - loss 0.24040542 - time (sec): 4.14 - samples/sec: 5994.20 - lr: 0.000015 - momentum: 0.000000 2023-10-18 17:42:03,200 epoch 8 - iter 356/894 - loss 0.24702978 - time (sec): 5.59 - samples/sec: 5934.25 - lr: 0.000014 - momentum: 0.000000 2023-10-18 17:42:04,569 epoch 8 - iter 445/894 - loss 0.24595873 - time (sec): 6.96 - samples/sec: 6008.26 - lr: 0.000014 - momentum: 0.000000 2023-10-18 17:42:05,978 epoch 8 - iter 534/894 - loss 0.25606875 - time (sec): 8.37 - samples/sec: 6045.47 - lr: 0.000013 - momentum: 0.000000 2023-10-18 17:42:07,402 epoch 8 - iter 623/894 - loss 0.24760570 - time (sec): 9.79 - samples/sec: 6192.33 - lr: 0.000013 - momentum: 0.000000 2023-10-18 17:42:08,807 epoch 8 - iter 712/894 - loss 0.25033713 - time (sec): 11.20 - samples/sec: 6203.69 - lr: 0.000012 - momentum: 0.000000 2023-10-18 17:42:10,172 epoch 8 - iter 801/894 - loss 0.25087722 - time (sec): 12.57 - samples/sec: 6206.95 - lr: 0.000012 - momentum: 0.000000 2023-10-18 17:42:11,599 epoch 8 - iter 890/894 - loss 0.24848771 - time (sec): 13.99 - samples/sec: 6164.42 - lr: 0.000011 - momentum: 0.000000 2023-10-18 17:42:11,676 ---------------------------------------------------------------------------------------------------- 2023-10-18 17:42:11,676 EPOCH 8 done: loss 0.2483 - lr: 0.000011 2023-10-18 17:42:16,927 DEV : loss 0.29879170656204224 - f1-score (micro avg) 0.3868 2023-10-18 17:42:16,953 saving best model 2023-10-18 17:42:16,987 ---------------------------------------------------------------------------------------------------- 2023-10-18 17:42:18,387 epoch 9 - iter 89/894 - loss 0.23595464 - time (sec): 1.40 - samples/sec: 5922.44 - lr: 0.000011 - momentum: 0.000000 2023-10-18 17:42:19,796 epoch 9 - iter 178/894 - loss 0.23156957 - time (sec): 2.81 - samples/sec: 6073.83 - lr: 0.000010 - momentum: 0.000000 2023-10-18 17:42:21,181 epoch 9 - iter 267/894 - loss 0.24432659 - time (sec): 4.19 - samples/sec: 6056.05 - lr: 0.000009 - momentum: 0.000000 2023-10-18 17:42:22,530 epoch 9 - iter 356/894 - loss 0.23683646 - time (sec): 5.54 - samples/sec: 6078.25 - lr: 0.000009 - momentum: 0.000000 2023-10-18 17:42:23,903 epoch 9 - iter 445/894 - loss 0.23601101 - time (sec): 6.91 - samples/sec: 6083.59 - lr: 0.000008 - momentum: 0.000000 2023-10-18 17:42:25,297 epoch 9 - iter 534/894 - loss 0.23146609 - time (sec): 8.31 - samples/sec: 6160.96 - lr: 0.000008 - momentum: 0.000000 2023-10-18 17:42:26,717 epoch 9 - iter 623/894 - loss 0.23681248 - time (sec): 9.73 - samples/sec: 6207.57 - lr: 0.000007 - momentum: 0.000000 2023-10-18 17:42:28,054 epoch 9 - iter 712/894 - loss 0.23875417 - time (sec): 11.07 - samples/sec: 6173.32 - lr: 0.000007 - momentum: 0.000000 2023-10-18 17:42:29,433 epoch 9 - iter 801/894 - loss 0.23968107 - time (sec): 12.45 - samples/sec: 6178.51 - lr: 0.000006 - momentum: 0.000000 2023-10-18 17:42:30,871 epoch 9 - iter 890/894 - loss 0.24025730 - time (sec): 13.88 - samples/sec: 6210.19 - lr: 0.000006 - momentum: 0.000000 2023-10-18 17:42:30,929 ---------------------------------------------------------------------------------------------------- 2023-10-18 17:42:30,930 EPOCH 9 done: loss 0.2399 - lr: 0.000006 2023-10-18 17:42:35,884 DEV : loss 0.30229300260543823 - f1-score (micro avg) 0.3947 2023-10-18 17:42:35,911 saving best model 2023-10-18 17:42:35,946 ---------------------------------------------------------------------------------------------------- 2023-10-18 17:42:37,286 epoch 10 - iter 89/894 - loss 0.23297878 - time (sec): 1.34 - samples/sec: 5957.31 - lr: 0.000005 - momentum: 0.000000 2023-10-18 17:42:38,671 epoch 10 - iter 178/894 - loss 0.21576070 - time (sec): 2.72 - samples/sec: 6349.89 - lr: 0.000004 - momentum: 0.000000 2023-10-18 17:42:40,035 epoch 10 - iter 267/894 - loss 0.22503277 - time (sec): 4.09 - samples/sec: 6305.28 - lr: 0.000004 - momentum: 0.000000 2023-10-18 17:42:41,408 epoch 10 - iter 356/894 - loss 0.23222666 - time (sec): 5.46 - samples/sec: 6276.33 - lr: 0.000003 - momentum: 0.000000 2023-10-18 17:42:42,826 epoch 10 - iter 445/894 - loss 0.23341935 - time (sec): 6.88 - samples/sec: 6380.28 - lr: 0.000003 - momentum: 0.000000 2023-10-18 17:42:44,561 epoch 10 - iter 534/894 - loss 0.23166851 - time (sec): 8.61 - samples/sec: 6073.29 - lr: 0.000002 - momentum: 0.000000 2023-10-18 17:42:45,993 epoch 10 - iter 623/894 - loss 0.23662064 - time (sec): 10.05 - samples/sec: 6036.84 - lr: 0.000002 - momentum: 0.000000 2023-10-18 17:42:47,357 epoch 10 - iter 712/894 - loss 0.23735465 - time (sec): 11.41 - samples/sec: 6051.71 - lr: 0.000001 - momentum: 0.000000 2023-10-18 17:42:48,742 epoch 10 - iter 801/894 - loss 0.23696194 - time (sec): 12.80 - samples/sec: 6066.99 - lr: 0.000001 - momentum: 0.000000 2023-10-18 17:42:50,194 epoch 10 - iter 890/894 - loss 0.23560390 - time (sec): 14.25 - samples/sec: 6056.66 - lr: 0.000000 - momentum: 0.000000 2023-10-18 17:42:50,255 ---------------------------------------------------------------------------------------------------- 2023-10-18 17:42:50,255 EPOCH 10 done: loss 0.2359 - lr: 0.000000 2023-10-18 17:42:55,223 DEV : loss 0.3022255003452301 - f1-score (micro avg) 0.393 2023-10-18 17:42:55,281 ---------------------------------------------------------------------------------------------------- 2023-10-18 17:42:55,281 Loading model from best epoch ... 2023-10-18 17:42:55,359 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-prod, B-prod, E-prod, I-prod, S-time, B-time, E-time, I-time 2023-10-18 17:42:57,662 Results: - F-score (micro) 0.3817 - F-score (macro) 0.188 - Accuracy 0.2493 By class: precision recall f1-score support loc 0.5260 0.5772 0.5504 596 pers 0.2013 0.2793 0.2340 333 org 0.0000 0.0000 0.0000 132 time 0.2143 0.1224 0.1558 49 prod 0.0000 0.0000 0.0000 66 micro avg 0.3869 0.3767 0.3817 1176 macro avg 0.1883 0.1958 0.1880 1176 weighted avg 0.3325 0.3767 0.3517 1176 2023-10-18 17:42:57,662 ----------------------------------------------------------------------------------------------------