File size: 37,172 Bytes
b6df31e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
2023-10-24 10:30:21,441 ----------------------------------------------------------------------------------------------------
2023-10-24 10:30:21,442 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(64001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (1): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (2): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (3): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (4): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (5): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (6): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (7): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (8): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (9): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (10): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (11): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=768, out_features=768, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=21, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-24 10:30:21,442 ----------------------------------------------------------------------------------------------------
2023-10-24 10:30:21,442 MultiCorpus: 5901 train + 1287 dev + 1505 test sentences
 - NER_HIPE_2022 Corpus: 5901 train + 1287 dev + 1505 test sentences - /home/ubuntu/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/fr/with_doc_seperator
2023-10-24 10:30:21,442 ----------------------------------------------------------------------------------------------------
2023-10-24 10:30:21,442 Train:  5901 sentences
2023-10-24 10:30:21,442         (train_with_dev=False, train_with_test=False)
2023-10-24 10:30:21,442 ----------------------------------------------------------------------------------------------------
2023-10-24 10:30:21,442 Training Params:
2023-10-24 10:30:21,442  - learning_rate: "3e-05" 
2023-10-24 10:30:21,442  - mini_batch_size: "4"
2023-10-24 10:30:21,442  - max_epochs: "10"
2023-10-24 10:30:21,443  - shuffle: "True"
2023-10-24 10:30:21,443 ----------------------------------------------------------------------------------------------------
2023-10-24 10:30:21,443 Plugins:
2023-10-24 10:30:21,443  - TensorboardLogger
2023-10-24 10:30:21,443  - LinearScheduler | warmup_fraction: '0.1'
2023-10-24 10:30:21,443 ----------------------------------------------------------------------------------------------------
2023-10-24 10:30:21,443 Final evaluation on model from best epoch (best-model.pt)
2023-10-24 10:30:21,443  - metric: "('micro avg', 'f1-score')"
2023-10-24 10:30:21,443 ----------------------------------------------------------------------------------------------------
2023-10-24 10:30:21,443 Computation:
2023-10-24 10:30:21,443  - compute on device: cuda:0
2023-10-24 10:30:21,443  - embedding storage: none
2023-10-24 10:30:21,443 ----------------------------------------------------------------------------------------------------
2023-10-24 10:30:21,443 Model training base path: "hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3"
2023-10-24 10:30:21,443 ----------------------------------------------------------------------------------------------------
2023-10-24 10:30:21,443 ----------------------------------------------------------------------------------------------------
2023-10-24 10:30:21,443 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-24 10:30:30,685 epoch 1 - iter 147/1476 - loss 1.95486685 - time (sec): 9.24 - samples/sec: 1731.50 - lr: 0.000003 - momentum: 0.000000
2023-10-24 10:30:39,970 epoch 1 - iter 294/1476 - loss 1.26204596 - time (sec): 18.53 - samples/sec: 1712.28 - lr: 0.000006 - momentum: 0.000000
2023-10-24 10:30:49,068 epoch 1 - iter 441/1476 - loss 1.01783980 - time (sec): 27.62 - samples/sec: 1664.50 - lr: 0.000009 - momentum: 0.000000
2023-10-24 10:30:58,969 epoch 1 - iter 588/1476 - loss 0.82960997 - time (sec): 37.53 - samples/sec: 1720.25 - lr: 0.000012 - momentum: 0.000000
2023-10-24 10:31:09,389 epoch 1 - iter 735/1476 - loss 0.69238553 - time (sec): 47.95 - samples/sec: 1760.88 - lr: 0.000015 - momentum: 0.000000
2023-10-24 10:31:18,839 epoch 1 - iter 882/1476 - loss 0.61723371 - time (sec): 57.40 - samples/sec: 1758.66 - lr: 0.000018 - momentum: 0.000000
2023-10-24 10:31:28,128 epoch 1 - iter 1029/1476 - loss 0.55914623 - time (sec): 66.68 - samples/sec: 1750.72 - lr: 0.000021 - momentum: 0.000000
2023-10-24 10:31:37,986 epoch 1 - iter 1176/1476 - loss 0.51214581 - time (sec): 76.54 - samples/sec: 1748.28 - lr: 0.000024 - momentum: 0.000000
2023-10-24 10:31:47,268 epoch 1 - iter 1323/1476 - loss 0.47688361 - time (sec): 85.82 - samples/sec: 1743.62 - lr: 0.000027 - momentum: 0.000000
2023-10-24 10:31:56,801 epoch 1 - iter 1470/1476 - loss 0.44429417 - time (sec): 95.36 - samples/sec: 1740.14 - lr: 0.000030 - momentum: 0.000000
2023-10-24 10:31:57,149 ----------------------------------------------------------------------------------------------------
2023-10-24 10:31:57,150 EPOCH 1 done: loss 0.4435 - lr: 0.000030
2023-10-24 10:32:03,446 DEV : loss 0.1300630122423172 - f1-score (micro avg)  0.7315
2023-10-24 10:32:03,467 saving best model
2023-10-24 10:32:04,027 ----------------------------------------------------------------------------------------------------
2023-10-24 10:32:13,594 epoch 2 - iter 147/1476 - loss 0.09774384 - time (sec): 9.57 - samples/sec: 1764.56 - lr: 0.000030 - momentum: 0.000000
2023-10-24 10:32:22,802 epoch 2 - iter 294/1476 - loss 0.12373892 - time (sec): 18.77 - samples/sec: 1717.04 - lr: 0.000029 - momentum: 0.000000
2023-10-24 10:32:31,998 epoch 2 - iter 441/1476 - loss 0.13775868 - time (sec): 27.97 - samples/sec: 1678.40 - lr: 0.000029 - momentum: 0.000000
2023-10-24 10:32:41,763 epoch 2 - iter 588/1476 - loss 0.12915200 - time (sec): 37.74 - samples/sec: 1702.64 - lr: 0.000029 - momentum: 0.000000
2023-10-24 10:32:51,061 epoch 2 - iter 735/1476 - loss 0.12918783 - time (sec): 47.03 - samples/sec: 1692.83 - lr: 0.000028 - momentum: 0.000000
2023-10-24 10:33:00,686 epoch 2 - iter 882/1476 - loss 0.12958345 - time (sec): 56.66 - samples/sec: 1704.04 - lr: 0.000028 - momentum: 0.000000
2023-10-24 10:33:09,743 epoch 2 - iter 1029/1476 - loss 0.12887412 - time (sec): 65.71 - samples/sec: 1691.48 - lr: 0.000028 - momentum: 0.000000
2023-10-24 10:33:19,759 epoch 2 - iter 1176/1476 - loss 0.12754934 - time (sec): 75.73 - samples/sec: 1725.62 - lr: 0.000027 - momentum: 0.000000
2023-10-24 10:33:29,648 epoch 2 - iter 1323/1476 - loss 0.12821778 - time (sec): 85.62 - samples/sec: 1726.78 - lr: 0.000027 - momentum: 0.000000
2023-10-24 10:33:39,650 epoch 2 - iter 1470/1476 - loss 0.12716691 - time (sec): 95.62 - samples/sec: 1735.61 - lr: 0.000027 - momentum: 0.000000
2023-10-24 10:33:39,996 ----------------------------------------------------------------------------------------------------
2023-10-24 10:33:39,997 EPOCH 2 done: loss 0.1270 - lr: 0.000027
2023-10-24 10:33:48,525 DEV : loss 0.13529355823993683 - f1-score (micro avg)  0.7895
2023-10-24 10:33:48,546 saving best model
2023-10-24 10:33:49,250 ----------------------------------------------------------------------------------------------------
2023-10-24 10:33:58,610 epoch 3 - iter 147/1476 - loss 0.06413979 - time (sec): 9.36 - samples/sec: 1629.69 - lr: 0.000026 - momentum: 0.000000
2023-10-24 10:34:08,613 epoch 3 - iter 294/1476 - loss 0.08008883 - time (sec): 19.36 - samples/sec: 1719.49 - lr: 0.000026 - momentum: 0.000000
2023-10-24 10:34:18,091 epoch 3 - iter 441/1476 - loss 0.07801843 - time (sec): 28.84 - samples/sec: 1704.77 - lr: 0.000026 - momentum: 0.000000
2023-10-24 10:34:27,913 epoch 3 - iter 588/1476 - loss 0.07393475 - time (sec): 38.66 - samples/sec: 1742.86 - lr: 0.000025 - momentum: 0.000000
2023-10-24 10:34:37,183 epoch 3 - iter 735/1476 - loss 0.07460277 - time (sec): 47.93 - samples/sec: 1724.93 - lr: 0.000025 - momentum: 0.000000
2023-10-24 10:34:46,875 epoch 3 - iter 882/1476 - loss 0.07823560 - time (sec): 57.62 - samples/sec: 1735.79 - lr: 0.000025 - momentum: 0.000000
2023-10-24 10:34:56,414 epoch 3 - iter 1029/1476 - loss 0.07661923 - time (sec): 67.16 - samples/sec: 1731.96 - lr: 0.000024 - momentum: 0.000000
2023-10-24 10:35:05,800 epoch 3 - iter 1176/1476 - loss 0.07755315 - time (sec): 76.55 - samples/sec: 1727.99 - lr: 0.000024 - momentum: 0.000000
2023-10-24 10:35:15,765 epoch 3 - iter 1323/1476 - loss 0.07765157 - time (sec): 86.51 - samples/sec: 1744.74 - lr: 0.000024 - momentum: 0.000000
2023-10-24 10:35:24,956 epoch 3 - iter 1470/1476 - loss 0.07767577 - time (sec): 95.70 - samples/sec: 1735.25 - lr: 0.000023 - momentum: 0.000000
2023-10-24 10:35:25,291 ----------------------------------------------------------------------------------------------------
2023-10-24 10:35:25,291 EPOCH 3 done: loss 0.0777 - lr: 0.000023
2023-10-24 10:35:33,788 DEV : loss 0.1414514034986496 - f1-score (micro avg)  0.8064
2023-10-24 10:35:33,809 saving best model
2023-10-24 10:35:34,565 ----------------------------------------------------------------------------------------------------
2023-10-24 10:35:44,207 epoch 4 - iter 147/1476 - loss 0.05130159 - time (sec): 9.64 - samples/sec: 1746.38 - lr: 0.000023 - momentum: 0.000000
2023-10-24 10:35:53,931 epoch 4 - iter 294/1476 - loss 0.04892145 - time (sec): 19.36 - samples/sec: 1811.41 - lr: 0.000023 - momentum: 0.000000
2023-10-24 10:36:03,580 epoch 4 - iter 441/1476 - loss 0.04776918 - time (sec): 29.01 - samples/sec: 1782.70 - lr: 0.000022 - momentum: 0.000000
2023-10-24 10:36:13,245 epoch 4 - iter 588/1476 - loss 0.04668210 - time (sec): 38.68 - samples/sec: 1746.47 - lr: 0.000022 - momentum: 0.000000
2023-10-24 10:36:22,993 epoch 4 - iter 735/1476 - loss 0.04560696 - time (sec): 48.43 - samples/sec: 1754.83 - lr: 0.000022 - momentum: 0.000000
2023-10-24 10:36:32,409 epoch 4 - iter 882/1476 - loss 0.04633596 - time (sec): 57.84 - samples/sec: 1747.73 - lr: 0.000021 - momentum: 0.000000
2023-10-24 10:36:42,394 epoch 4 - iter 1029/1476 - loss 0.04952081 - time (sec): 67.83 - samples/sec: 1755.06 - lr: 0.000021 - momentum: 0.000000
2023-10-24 10:36:51,859 epoch 4 - iter 1176/1476 - loss 0.05327110 - time (sec): 77.29 - samples/sec: 1744.99 - lr: 0.000021 - momentum: 0.000000
2023-10-24 10:37:01,316 epoch 4 - iter 1323/1476 - loss 0.05312525 - time (sec): 86.75 - samples/sec: 1738.37 - lr: 0.000020 - momentum: 0.000000
2023-10-24 10:37:10,558 epoch 4 - iter 1470/1476 - loss 0.05433269 - time (sec): 95.99 - samples/sec: 1726.40 - lr: 0.000020 - momentum: 0.000000
2023-10-24 10:37:10,926 ----------------------------------------------------------------------------------------------------
2023-10-24 10:37:10,926 EPOCH 4 done: loss 0.0545 - lr: 0.000020
2023-10-24 10:37:19,428 DEV : loss 0.17535756528377533 - f1-score (micro avg)  0.8202
2023-10-24 10:37:19,449 saving best model
2023-10-24 10:37:20,150 ----------------------------------------------------------------------------------------------------
2023-10-24 10:37:29,883 epoch 5 - iter 147/1476 - loss 0.03243990 - time (sec): 9.73 - samples/sec: 1742.69 - lr: 0.000020 - momentum: 0.000000
2023-10-24 10:37:39,519 epoch 5 - iter 294/1476 - loss 0.04635094 - time (sec): 19.37 - samples/sec: 1773.97 - lr: 0.000019 - momentum: 0.000000
2023-10-24 10:37:49,362 epoch 5 - iter 441/1476 - loss 0.04025634 - time (sec): 29.21 - samples/sec: 1779.48 - lr: 0.000019 - momentum: 0.000000
2023-10-24 10:37:58,525 epoch 5 - iter 588/1476 - loss 0.03809557 - time (sec): 38.37 - samples/sec: 1749.42 - lr: 0.000019 - momentum: 0.000000
2023-10-24 10:38:08,520 epoch 5 - iter 735/1476 - loss 0.03722634 - time (sec): 48.37 - samples/sec: 1747.98 - lr: 0.000018 - momentum: 0.000000
2023-10-24 10:38:17,615 epoch 5 - iter 882/1476 - loss 0.03652541 - time (sec): 57.46 - samples/sec: 1725.74 - lr: 0.000018 - momentum: 0.000000
2023-10-24 10:38:26,667 epoch 5 - iter 1029/1476 - loss 0.03632487 - time (sec): 66.52 - samples/sec: 1721.17 - lr: 0.000018 - momentum: 0.000000
2023-10-24 10:38:35,997 epoch 5 - iter 1176/1476 - loss 0.03493445 - time (sec): 75.85 - samples/sec: 1706.50 - lr: 0.000017 - momentum: 0.000000
2023-10-24 10:38:45,476 epoch 5 - iter 1323/1476 - loss 0.03543690 - time (sec): 85.33 - samples/sec: 1712.30 - lr: 0.000017 - momentum: 0.000000
2023-10-24 10:38:55,831 epoch 5 - iter 1470/1476 - loss 0.03603493 - time (sec): 95.68 - samples/sec: 1734.96 - lr: 0.000017 - momentum: 0.000000
2023-10-24 10:38:56,171 ----------------------------------------------------------------------------------------------------
2023-10-24 10:38:56,172 EPOCH 5 done: loss 0.0362 - lr: 0.000017
2023-10-24 10:39:04,666 DEV : loss 0.18856941163539886 - f1-score (micro avg)  0.8052
2023-10-24 10:39:04,687 ----------------------------------------------------------------------------------------------------
2023-10-24 10:39:14,450 epoch 6 - iter 147/1476 - loss 0.03138711 - time (sec): 9.76 - samples/sec: 1826.14 - lr: 0.000016 - momentum: 0.000000
2023-10-24 10:39:24,003 epoch 6 - iter 294/1476 - loss 0.02845150 - time (sec): 19.31 - samples/sec: 1750.17 - lr: 0.000016 - momentum: 0.000000
2023-10-24 10:39:33,538 epoch 6 - iter 441/1476 - loss 0.02731184 - time (sec): 28.85 - samples/sec: 1735.88 - lr: 0.000016 - momentum: 0.000000
2023-10-24 10:39:43,120 epoch 6 - iter 588/1476 - loss 0.02757989 - time (sec): 38.43 - samples/sec: 1737.16 - lr: 0.000015 - momentum: 0.000000
2023-10-24 10:39:52,417 epoch 6 - iter 735/1476 - loss 0.02426912 - time (sec): 47.73 - samples/sec: 1730.41 - lr: 0.000015 - momentum: 0.000000
2023-10-24 10:40:02,130 epoch 6 - iter 882/1476 - loss 0.02398610 - time (sec): 57.44 - samples/sec: 1740.41 - lr: 0.000015 - momentum: 0.000000
2023-10-24 10:40:11,398 epoch 6 - iter 1029/1476 - loss 0.02369056 - time (sec): 66.71 - samples/sec: 1723.81 - lr: 0.000014 - momentum: 0.000000
2023-10-24 10:40:20,772 epoch 6 - iter 1176/1476 - loss 0.02397182 - time (sec): 76.08 - samples/sec: 1726.11 - lr: 0.000014 - momentum: 0.000000
2023-10-24 10:40:30,870 epoch 6 - iter 1323/1476 - loss 0.02409287 - time (sec): 86.18 - samples/sec: 1738.85 - lr: 0.000014 - momentum: 0.000000
2023-10-24 10:40:40,391 epoch 6 - iter 1470/1476 - loss 0.02429223 - time (sec): 95.70 - samples/sec: 1733.92 - lr: 0.000013 - momentum: 0.000000
2023-10-24 10:40:40,734 ----------------------------------------------------------------------------------------------------
2023-10-24 10:40:40,735 EPOCH 6 done: loss 0.0242 - lr: 0.000013
2023-10-24 10:40:49,251 DEV : loss 0.1976252794265747 - f1-score (micro avg)  0.8181
2023-10-24 10:40:49,272 ----------------------------------------------------------------------------------------------------
2023-10-24 10:40:58,821 epoch 7 - iter 147/1476 - loss 0.02416041 - time (sec): 9.55 - samples/sec: 1720.61 - lr: 0.000013 - momentum: 0.000000
2023-10-24 10:41:08,314 epoch 7 - iter 294/1476 - loss 0.02557096 - time (sec): 19.04 - samples/sec: 1705.97 - lr: 0.000013 - momentum: 0.000000
2023-10-24 10:41:18,019 epoch 7 - iter 441/1476 - loss 0.02401158 - time (sec): 28.75 - samples/sec: 1731.71 - lr: 0.000012 - momentum: 0.000000
2023-10-24 10:41:27,278 epoch 7 - iter 588/1476 - loss 0.02052173 - time (sec): 38.01 - samples/sec: 1714.38 - lr: 0.000012 - momentum: 0.000000
2023-10-24 10:41:36,455 epoch 7 - iter 735/1476 - loss 0.01942122 - time (sec): 47.18 - samples/sec: 1703.48 - lr: 0.000012 - momentum: 0.000000
2023-10-24 10:41:46,543 epoch 7 - iter 882/1476 - loss 0.01902328 - time (sec): 57.27 - samples/sec: 1730.36 - lr: 0.000011 - momentum: 0.000000
2023-10-24 10:41:56,034 epoch 7 - iter 1029/1476 - loss 0.01808307 - time (sec): 66.76 - samples/sec: 1730.74 - lr: 0.000011 - momentum: 0.000000
2023-10-24 10:42:05,699 epoch 7 - iter 1176/1476 - loss 0.01833467 - time (sec): 76.43 - samples/sec: 1730.68 - lr: 0.000011 - momentum: 0.000000
2023-10-24 10:42:15,348 epoch 7 - iter 1323/1476 - loss 0.01730497 - time (sec): 86.08 - samples/sec: 1734.66 - lr: 0.000010 - momentum: 0.000000
2023-10-24 10:42:24,846 epoch 7 - iter 1470/1476 - loss 0.01857979 - time (sec): 95.57 - samples/sec: 1734.74 - lr: 0.000010 - momentum: 0.000000
2023-10-24 10:42:25,221 ----------------------------------------------------------------------------------------------------
2023-10-24 10:42:25,221 EPOCH 7 done: loss 0.0186 - lr: 0.000010
2023-10-24 10:42:33,760 DEV : loss 0.2103830873966217 - f1-score (micro avg)  0.8275
2023-10-24 10:42:33,781 saving best model
2023-10-24 10:42:34,480 ----------------------------------------------------------------------------------------------------
2023-10-24 10:42:43,884 epoch 8 - iter 147/1476 - loss 0.01365644 - time (sec): 9.40 - samples/sec: 1696.78 - lr: 0.000010 - momentum: 0.000000
2023-10-24 10:42:53,017 epoch 8 - iter 294/1476 - loss 0.01467945 - time (sec): 18.54 - samples/sec: 1658.43 - lr: 0.000009 - momentum: 0.000000
2023-10-24 10:43:03,240 epoch 8 - iter 441/1476 - loss 0.01419339 - time (sec): 28.76 - samples/sec: 1760.03 - lr: 0.000009 - momentum: 0.000000
2023-10-24 10:43:12,794 epoch 8 - iter 588/1476 - loss 0.01139119 - time (sec): 38.31 - samples/sec: 1760.19 - lr: 0.000009 - momentum: 0.000000
2023-10-24 10:43:22,562 epoch 8 - iter 735/1476 - loss 0.01070596 - time (sec): 48.08 - samples/sec: 1754.76 - lr: 0.000008 - momentum: 0.000000
2023-10-24 10:43:32,626 epoch 8 - iter 882/1476 - loss 0.01177176 - time (sec): 58.15 - samples/sec: 1762.34 - lr: 0.000008 - momentum: 0.000000
2023-10-24 10:43:41,858 epoch 8 - iter 1029/1476 - loss 0.01286942 - time (sec): 67.38 - samples/sec: 1742.60 - lr: 0.000008 - momentum: 0.000000
2023-10-24 10:43:51,105 epoch 8 - iter 1176/1476 - loss 0.01221774 - time (sec): 76.62 - samples/sec: 1735.10 - lr: 0.000007 - momentum: 0.000000
2023-10-24 10:44:00,445 epoch 8 - iter 1323/1476 - loss 0.01176144 - time (sec): 85.96 - samples/sec: 1731.26 - lr: 0.000007 - momentum: 0.000000
2023-10-24 10:44:10,081 epoch 8 - iter 1470/1476 - loss 0.01227108 - time (sec): 95.60 - samples/sec: 1733.60 - lr: 0.000007 - momentum: 0.000000
2023-10-24 10:44:10,447 ----------------------------------------------------------------------------------------------------
2023-10-24 10:44:10,447 EPOCH 8 done: loss 0.0123 - lr: 0.000007
2023-10-24 10:44:19,008 DEV : loss 0.2190389633178711 - f1-score (micro avg)  0.827
2023-10-24 10:44:19,029 ----------------------------------------------------------------------------------------------------
2023-10-24 10:44:28,424 epoch 9 - iter 147/1476 - loss 0.00656723 - time (sec): 9.39 - samples/sec: 1692.09 - lr: 0.000006 - momentum: 0.000000
2023-10-24 10:44:38,241 epoch 9 - iter 294/1476 - loss 0.00522978 - time (sec): 19.21 - samples/sec: 1767.71 - lr: 0.000006 - momentum: 0.000000
2023-10-24 10:44:47,503 epoch 9 - iter 441/1476 - loss 0.00478950 - time (sec): 28.47 - samples/sec: 1720.95 - lr: 0.000006 - momentum: 0.000000
2023-10-24 10:44:56,695 epoch 9 - iter 588/1476 - loss 0.00468800 - time (sec): 37.66 - samples/sec: 1698.76 - lr: 0.000005 - momentum: 0.000000
2023-10-24 10:45:05,920 epoch 9 - iter 735/1476 - loss 0.00606865 - time (sec): 46.89 - samples/sec: 1700.29 - lr: 0.000005 - momentum: 0.000000
2023-10-24 10:45:15,342 epoch 9 - iter 882/1476 - loss 0.00622321 - time (sec): 56.31 - samples/sec: 1699.13 - lr: 0.000005 - momentum: 0.000000
2023-10-24 10:45:24,857 epoch 9 - iter 1029/1476 - loss 0.00584308 - time (sec): 65.83 - samples/sec: 1709.37 - lr: 0.000004 - momentum: 0.000000
2023-10-24 10:45:34,881 epoch 9 - iter 1176/1476 - loss 0.00648079 - time (sec): 75.85 - samples/sec: 1730.03 - lr: 0.000004 - momentum: 0.000000
2023-10-24 10:45:45,039 epoch 9 - iter 1323/1476 - loss 0.00662559 - time (sec): 86.01 - samples/sec: 1738.06 - lr: 0.000004 - momentum: 0.000000
2023-10-24 10:45:54,542 epoch 9 - iter 1470/1476 - loss 0.00685200 - time (sec): 95.51 - samples/sec: 1737.40 - lr: 0.000003 - momentum: 0.000000
2023-10-24 10:45:54,884 ----------------------------------------------------------------------------------------------------
2023-10-24 10:45:54,885 EPOCH 9 done: loss 0.0068 - lr: 0.000003
2023-10-24 10:46:03,440 DEV : loss 0.22385086119174957 - f1-score (micro avg)  0.8342
2023-10-24 10:46:03,462 saving best model
2023-10-24 10:46:04,162 ----------------------------------------------------------------------------------------------------
2023-10-24 10:46:13,588 epoch 10 - iter 147/1476 - loss 0.00352151 - time (sec): 9.42 - samples/sec: 1718.97 - lr: 0.000003 - momentum: 0.000000
2023-10-24 10:46:22,961 epoch 10 - iter 294/1476 - loss 0.00446608 - time (sec): 18.80 - samples/sec: 1702.67 - lr: 0.000003 - momentum: 0.000000
2023-10-24 10:46:32,841 epoch 10 - iter 441/1476 - loss 0.00470680 - time (sec): 28.68 - samples/sec: 1742.15 - lr: 0.000002 - momentum: 0.000000
2023-10-24 10:46:42,528 epoch 10 - iter 588/1476 - loss 0.00484924 - time (sec): 38.36 - samples/sec: 1761.90 - lr: 0.000002 - momentum: 0.000000
2023-10-24 10:46:52,776 epoch 10 - iter 735/1476 - loss 0.00598633 - time (sec): 48.61 - samples/sec: 1776.90 - lr: 0.000002 - momentum: 0.000000
2023-10-24 10:47:02,222 epoch 10 - iter 882/1476 - loss 0.00629805 - time (sec): 58.06 - samples/sec: 1762.31 - lr: 0.000001 - momentum: 0.000000
2023-10-24 10:47:12,020 epoch 10 - iter 1029/1476 - loss 0.00622798 - time (sec): 67.86 - samples/sec: 1757.82 - lr: 0.000001 - momentum: 0.000000
2023-10-24 10:47:21,170 epoch 10 - iter 1176/1476 - loss 0.00617265 - time (sec): 77.01 - samples/sec: 1743.69 - lr: 0.000001 - momentum: 0.000000
2023-10-24 10:47:30,350 epoch 10 - iter 1323/1476 - loss 0.00592236 - time (sec): 86.19 - samples/sec: 1734.52 - lr: 0.000000 - momentum: 0.000000
2023-10-24 10:47:39,701 epoch 10 - iter 1470/1476 - loss 0.00547473 - time (sec): 95.54 - samples/sec: 1736.26 - lr: 0.000000 - momentum: 0.000000
2023-10-24 10:47:40,046 ----------------------------------------------------------------------------------------------------
2023-10-24 10:47:40,046 EPOCH 10 done: loss 0.0055 - lr: 0.000000
2023-10-24 10:47:48,614 DEV : loss 0.22415557503700256 - f1-score (micro avg)  0.8404
2023-10-24 10:47:48,636 saving best model
2023-10-24 10:47:49,932 ----------------------------------------------------------------------------------------------------
2023-10-24 10:47:49,932 Loading model from best epoch ...
2023-10-24 10:47:51,801 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-time, B-time, E-time, I-time, S-prod, B-prod, E-prod, I-prod
2023-10-24 10:47:58,484 
Results:
- F-score (micro) 0.7974
- F-score (macro) 0.7083
- Accuracy 0.6897

By class:
              precision    recall  f1-score   support

         loc     0.8366    0.8893    0.8621       858
        pers     0.7656    0.7784    0.7719       537
         org     0.5882    0.6061    0.5970       132
        prod     0.7018    0.6557    0.6780        61
        time     0.5873    0.6852    0.6325        54

   micro avg     0.7806    0.8149    0.7974      1642
   macro avg     0.6959    0.7229    0.7083      1642
weighted avg     0.7802    0.8149    0.7969      1642

2023-10-24 10:47:58,485 ----------------------------------------------------------------------------------------------------