File size: 37,172 Bytes
b6df31e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 |
2023-10-24 10:30:21,441 ----------------------------------------------------------------------------------------------------
2023-10-24 10:30:21,442 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(64001, 768)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
(0): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(1): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(2): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(3): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(4): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(5): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(6): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(7): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(8): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(9): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(10): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(11): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): BertPooler(
(dense): Linear(in_features=768, out_features=768, bias=True)
(activation): Tanh()
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=768, out_features=21, bias=True)
(loss_function): CrossEntropyLoss()
)"
2023-10-24 10:30:21,442 ----------------------------------------------------------------------------------------------------
2023-10-24 10:30:21,442 MultiCorpus: 5901 train + 1287 dev + 1505 test sentences
- NER_HIPE_2022 Corpus: 5901 train + 1287 dev + 1505 test sentences - /home/ubuntu/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/fr/with_doc_seperator
2023-10-24 10:30:21,442 ----------------------------------------------------------------------------------------------------
2023-10-24 10:30:21,442 Train: 5901 sentences
2023-10-24 10:30:21,442 (train_with_dev=False, train_with_test=False)
2023-10-24 10:30:21,442 ----------------------------------------------------------------------------------------------------
2023-10-24 10:30:21,442 Training Params:
2023-10-24 10:30:21,442 - learning_rate: "3e-05"
2023-10-24 10:30:21,442 - mini_batch_size: "4"
2023-10-24 10:30:21,442 - max_epochs: "10"
2023-10-24 10:30:21,443 - shuffle: "True"
2023-10-24 10:30:21,443 ----------------------------------------------------------------------------------------------------
2023-10-24 10:30:21,443 Plugins:
2023-10-24 10:30:21,443 - TensorboardLogger
2023-10-24 10:30:21,443 - LinearScheduler | warmup_fraction: '0.1'
2023-10-24 10:30:21,443 ----------------------------------------------------------------------------------------------------
2023-10-24 10:30:21,443 Final evaluation on model from best epoch (best-model.pt)
2023-10-24 10:30:21,443 - metric: "('micro avg', 'f1-score')"
2023-10-24 10:30:21,443 ----------------------------------------------------------------------------------------------------
2023-10-24 10:30:21,443 Computation:
2023-10-24 10:30:21,443 - compute on device: cuda:0
2023-10-24 10:30:21,443 - embedding storage: none
2023-10-24 10:30:21,443 ----------------------------------------------------------------------------------------------------
2023-10-24 10:30:21,443 Model training base path: "hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3"
2023-10-24 10:30:21,443 ----------------------------------------------------------------------------------------------------
2023-10-24 10:30:21,443 ----------------------------------------------------------------------------------------------------
2023-10-24 10:30:21,443 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-24 10:30:30,685 epoch 1 - iter 147/1476 - loss 1.95486685 - time (sec): 9.24 - samples/sec: 1731.50 - lr: 0.000003 - momentum: 0.000000
2023-10-24 10:30:39,970 epoch 1 - iter 294/1476 - loss 1.26204596 - time (sec): 18.53 - samples/sec: 1712.28 - lr: 0.000006 - momentum: 0.000000
2023-10-24 10:30:49,068 epoch 1 - iter 441/1476 - loss 1.01783980 - time (sec): 27.62 - samples/sec: 1664.50 - lr: 0.000009 - momentum: 0.000000
2023-10-24 10:30:58,969 epoch 1 - iter 588/1476 - loss 0.82960997 - time (sec): 37.53 - samples/sec: 1720.25 - lr: 0.000012 - momentum: 0.000000
2023-10-24 10:31:09,389 epoch 1 - iter 735/1476 - loss 0.69238553 - time (sec): 47.95 - samples/sec: 1760.88 - lr: 0.000015 - momentum: 0.000000
2023-10-24 10:31:18,839 epoch 1 - iter 882/1476 - loss 0.61723371 - time (sec): 57.40 - samples/sec: 1758.66 - lr: 0.000018 - momentum: 0.000000
2023-10-24 10:31:28,128 epoch 1 - iter 1029/1476 - loss 0.55914623 - time (sec): 66.68 - samples/sec: 1750.72 - lr: 0.000021 - momentum: 0.000000
2023-10-24 10:31:37,986 epoch 1 - iter 1176/1476 - loss 0.51214581 - time (sec): 76.54 - samples/sec: 1748.28 - lr: 0.000024 - momentum: 0.000000
2023-10-24 10:31:47,268 epoch 1 - iter 1323/1476 - loss 0.47688361 - time (sec): 85.82 - samples/sec: 1743.62 - lr: 0.000027 - momentum: 0.000000
2023-10-24 10:31:56,801 epoch 1 - iter 1470/1476 - loss 0.44429417 - time (sec): 95.36 - samples/sec: 1740.14 - lr: 0.000030 - momentum: 0.000000
2023-10-24 10:31:57,149 ----------------------------------------------------------------------------------------------------
2023-10-24 10:31:57,150 EPOCH 1 done: loss 0.4435 - lr: 0.000030
2023-10-24 10:32:03,446 DEV : loss 0.1300630122423172 - f1-score (micro avg) 0.7315
2023-10-24 10:32:03,467 saving best model
2023-10-24 10:32:04,027 ----------------------------------------------------------------------------------------------------
2023-10-24 10:32:13,594 epoch 2 - iter 147/1476 - loss 0.09774384 - time (sec): 9.57 - samples/sec: 1764.56 - lr: 0.000030 - momentum: 0.000000
2023-10-24 10:32:22,802 epoch 2 - iter 294/1476 - loss 0.12373892 - time (sec): 18.77 - samples/sec: 1717.04 - lr: 0.000029 - momentum: 0.000000
2023-10-24 10:32:31,998 epoch 2 - iter 441/1476 - loss 0.13775868 - time (sec): 27.97 - samples/sec: 1678.40 - lr: 0.000029 - momentum: 0.000000
2023-10-24 10:32:41,763 epoch 2 - iter 588/1476 - loss 0.12915200 - time (sec): 37.74 - samples/sec: 1702.64 - lr: 0.000029 - momentum: 0.000000
2023-10-24 10:32:51,061 epoch 2 - iter 735/1476 - loss 0.12918783 - time (sec): 47.03 - samples/sec: 1692.83 - lr: 0.000028 - momentum: 0.000000
2023-10-24 10:33:00,686 epoch 2 - iter 882/1476 - loss 0.12958345 - time (sec): 56.66 - samples/sec: 1704.04 - lr: 0.000028 - momentum: 0.000000
2023-10-24 10:33:09,743 epoch 2 - iter 1029/1476 - loss 0.12887412 - time (sec): 65.71 - samples/sec: 1691.48 - lr: 0.000028 - momentum: 0.000000
2023-10-24 10:33:19,759 epoch 2 - iter 1176/1476 - loss 0.12754934 - time (sec): 75.73 - samples/sec: 1725.62 - lr: 0.000027 - momentum: 0.000000
2023-10-24 10:33:29,648 epoch 2 - iter 1323/1476 - loss 0.12821778 - time (sec): 85.62 - samples/sec: 1726.78 - lr: 0.000027 - momentum: 0.000000
2023-10-24 10:33:39,650 epoch 2 - iter 1470/1476 - loss 0.12716691 - time (sec): 95.62 - samples/sec: 1735.61 - lr: 0.000027 - momentum: 0.000000
2023-10-24 10:33:39,996 ----------------------------------------------------------------------------------------------------
2023-10-24 10:33:39,997 EPOCH 2 done: loss 0.1270 - lr: 0.000027
2023-10-24 10:33:48,525 DEV : loss 0.13529355823993683 - f1-score (micro avg) 0.7895
2023-10-24 10:33:48,546 saving best model
2023-10-24 10:33:49,250 ----------------------------------------------------------------------------------------------------
2023-10-24 10:33:58,610 epoch 3 - iter 147/1476 - loss 0.06413979 - time (sec): 9.36 - samples/sec: 1629.69 - lr: 0.000026 - momentum: 0.000000
2023-10-24 10:34:08,613 epoch 3 - iter 294/1476 - loss 0.08008883 - time (sec): 19.36 - samples/sec: 1719.49 - lr: 0.000026 - momentum: 0.000000
2023-10-24 10:34:18,091 epoch 3 - iter 441/1476 - loss 0.07801843 - time (sec): 28.84 - samples/sec: 1704.77 - lr: 0.000026 - momentum: 0.000000
2023-10-24 10:34:27,913 epoch 3 - iter 588/1476 - loss 0.07393475 - time (sec): 38.66 - samples/sec: 1742.86 - lr: 0.000025 - momentum: 0.000000
2023-10-24 10:34:37,183 epoch 3 - iter 735/1476 - loss 0.07460277 - time (sec): 47.93 - samples/sec: 1724.93 - lr: 0.000025 - momentum: 0.000000
2023-10-24 10:34:46,875 epoch 3 - iter 882/1476 - loss 0.07823560 - time (sec): 57.62 - samples/sec: 1735.79 - lr: 0.000025 - momentum: 0.000000
2023-10-24 10:34:56,414 epoch 3 - iter 1029/1476 - loss 0.07661923 - time (sec): 67.16 - samples/sec: 1731.96 - lr: 0.000024 - momentum: 0.000000
2023-10-24 10:35:05,800 epoch 3 - iter 1176/1476 - loss 0.07755315 - time (sec): 76.55 - samples/sec: 1727.99 - lr: 0.000024 - momentum: 0.000000
2023-10-24 10:35:15,765 epoch 3 - iter 1323/1476 - loss 0.07765157 - time (sec): 86.51 - samples/sec: 1744.74 - lr: 0.000024 - momentum: 0.000000
2023-10-24 10:35:24,956 epoch 3 - iter 1470/1476 - loss 0.07767577 - time (sec): 95.70 - samples/sec: 1735.25 - lr: 0.000023 - momentum: 0.000000
2023-10-24 10:35:25,291 ----------------------------------------------------------------------------------------------------
2023-10-24 10:35:25,291 EPOCH 3 done: loss 0.0777 - lr: 0.000023
2023-10-24 10:35:33,788 DEV : loss 0.1414514034986496 - f1-score (micro avg) 0.8064
2023-10-24 10:35:33,809 saving best model
2023-10-24 10:35:34,565 ----------------------------------------------------------------------------------------------------
2023-10-24 10:35:44,207 epoch 4 - iter 147/1476 - loss 0.05130159 - time (sec): 9.64 - samples/sec: 1746.38 - lr: 0.000023 - momentum: 0.000000
2023-10-24 10:35:53,931 epoch 4 - iter 294/1476 - loss 0.04892145 - time (sec): 19.36 - samples/sec: 1811.41 - lr: 0.000023 - momentum: 0.000000
2023-10-24 10:36:03,580 epoch 4 - iter 441/1476 - loss 0.04776918 - time (sec): 29.01 - samples/sec: 1782.70 - lr: 0.000022 - momentum: 0.000000
2023-10-24 10:36:13,245 epoch 4 - iter 588/1476 - loss 0.04668210 - time (sec): 38.68 - samples/sec: 1746.47 - lr: 0.000022 - momentum: 0.000000
2023-10-24 10:36:22,993 epoch 4 - iter 735/1476 - loss 0.04560696 - time (sec): 48.43 - samples/sec: 1754.83 - lr: 0.000022 - momentum: 0.000000
2023-10-24 10:36:32,409 epoch 4 - iter 882/1476 - loss 0.04633596 - time (sec): 57.84 - samples/sec: 1747.73 - lr: 0.000021 - momentum: 0.000000
2023-10-24 10:36:42,394 epoch 4 - iter 1029/1476 - loss 0.04952081 - time (sec): 67.83 - samples/sec: 1755.06 - lr: 0.000021 - momentum: 0.000000
2023-10-24 10:36:51,859 epoch 4 - iter 1176/1476 - loss 0.05327110 - time (sec): 77.29 - samples/sec: 1744.99 - lr: 0.000021 - momentum: 0.000000
2023-10-24 10:37:01,316 epoch 4 - iter 1323/1476 - loss 0.05312525 - time (sec): 86.75 - samples/sec: 1738.37 - lr: 0.000020 - momentum: 0.000000
2023-10-24 10:37:10,558 epoch 4 - iter 1470/1476 - loss 0.05433269 - time (sec): 95.99 - samples/sec: 1726.40 - lr: 0.000020 - momentum: 0.000000
2023-10-24 10:37:10,926 ----------------------------------------------------------------------------------------------------
2023-10-24 10:37:10,926 EPOCH 4 done: loss 0.0545 - lr: 0.000020
2023-10-24 10:37:19,428 DEV : loss 0.17535756528377533 - f1-score (micro avg) 0.8202
2023-10-24 10:37:19,449 saving best model
2023-10-24 10:37:20,150 ----------------------------------------------------------------------------------------------------
2023-10-24 10:37:29,883 epoch 5 - iter 147/1476 - loss 0.03243990 - time (sec): 9.73 - samples/sec: 1742.69 - lr: 0.000020 - momentum: 0.000000
2023-10-24 10:37:39,519 epoch 5 - iter 294/1476 - loss 0.04635094 - time (sec): 19.37 - samples/sec: 1773.97 - lr: 0.000019 - momentum: 0.000000
2023-10-24 10:37:49,362 epoch 5 - iter 441/1476 - loss 0.04025634 - time (sec): 29.21 - samples/sec: 1779.48 - lr: 0.000019 - momentum: 0.000000
2023-10-24 10:37:58,525 epoch 5 - iter 588/1476 - loss 0.03809557 - time (sec): 38.37 - samples/sec: 1749.42 - lr: 0.000019 - momentum: 0.000000
2023-10-24 10:38:08,520 epoch 5 - iter 735/1476 - loss 0.03722634 - time (sec): 48.37 - samples/sec: 1747.98 - lr: 0.000018 - momentum: 0.000000
2023-10-24 10:38:17,615 epoch 5 - iter 882/1476 - loss 0.03652541 - time (sec): 57.46 - samples/sec: 1725.74 - lr: 0.000018 - momentum: 0.000000
2023-10-24 10:38:26,667 epoch 5 - iter 1029/1476 - loss 0.03632487 - time (sec): 66.52 - samples/sec: 1721.17 - lr: 0.000018 - momentum: 0.000000
2023-10-24 10:38:35,997 epoch 5 - iter 1176/1476 - loss 0.03493445 - time (sec): 75.85 - samples/sec: 1706.50 - lr: 0.000017 - momentum: 0.000000
2023-10-24 10:38:45,476 epoch 5 - iter 1323/1476 - loss 0.03543690 - time (sec): 85.33 - samples/sec: 1712.30 - lr: 0.000017 - momentum: 0.000000
2023-10-24 10:38:55,831 epoch 5 - iter 1470/1476 - loss 0.03603493 - time (sec): 95.68 - samples/sec: 1734.96 - lr: 0.000017 - momentum: 0.000000
2023-10-24 10:38:56,171 ----------------------------------------------------------------------------------------------------
2023-10-24 10:38:56,172 EPOCH 5 done: loss 0.0362 - lr: 0.000017
2023-10-24 10:39:04,666 DEV : loss 0.18856941163539886 - f1-score (micro avg) 0.8052
2023-10-24 10:39:04,687 ----------------------------------------------------------------------------------------------------
2023-10-24 10:39:14,450 epoch 6 - iter 147/1476 - loss 0.03138711 - time (sec): 9.76 - samples/sec: 1826.14 - lr: 0.000016 - momentum: 0.000000
2023-10-24 10:39:24,003 epoch 6 - iter 294/1476 - loss 0.02845150 - time (sec): 19.31 - samples/sec: 1750.17 - lr: 0.000016 - momentum: 0.000000
2023-10-24 10:39:33,538 epoch 6 - iter 441/1476 - loss 0.02731184 - time (sec): 28.85 - samples/sec: 1735.88 - lr: 0.000016 - momentum: 0.000000
2023-10-24 10:39:43,120 epoch 6 - iter 588/1476 - loss 0.02757989 - time (sec): 38.43 - samples/sec: 1737.16 - lr: 0.000015 - momentum: 0.000000
2023-10-24 10:39:52,417 epoch 6 - iter 735/1476 - loss 0.02426912 - time (sec): 47.73 - samples/sec: 1730.41 - lr: 0.000015 - momentum: 0.000000
2023-10-24 10:40:02,130 epoch 6 - iter 882/1476 - loss 0.02398610 - time (sec): 57.44 - samples/sec: 1740.41 - lr: 0.000015 - momentum: 0.000000
2023-10-24 10:40:11,398 epoch 6 - iter 1029/1476 - loss 0.02369056 - time (sec): 66.71 - samples/sec: 1723.81 - lr: 0.000014 - momentum: 0.000000
2023-10-24 10:40:20,772 epoch 6 - iter 1176/1476 - loss 0.02397182 - time (sec): 76.08 - samples/sec: 1726.11 - lr: 0.000014 - momentum: 0.000000
2023-10-24 10:40:30,870 epoch 6 - iter 1323/1476 - loss 0.02409287 - time (sec): 86.18 - samples/sec: 1738.85 - lr: 0.000014 - momentum: 0.000000
2023-10-24 10:40:40,391 epoch 6 - iter 1470/1476 - loss 0.02429223 - time (sec): 95.70 - samples/sec: 1733.92 - lr: 0.000013 - momentum: 0.000000
2023-10-24 10:40:40,734 ----------------------------------------------------------------------------------------------------
2023-10-24 10:40:40,735 EPOCH 6 done: loss 0.0242 - lr: 0.000013
2023-10-24 10:40:49,251 DEV : loss 0.1976252794265747 - f1-score (micro avg) 0.8181
2023-10-24 10:40:49,272 ----------------------------------------------------------------------------------------------------
2023-10-24 10:40:58,821 epoch 7 - iter 147/1476 - loss 0.02416041 - time (sec): 9.55 - samples/sec: 1720.61 - lr: 0.000013 - momentum: 0.000000
2023-10-24 10:41:08,314 epoch 7 - iter 294/1476 - loss 0.02557096 - time (sec): 19.04 - samples/sec: 1705.97 - lr: 0.000013 - momentum: 0.000000
2023-10-24 10:41:18,019 epoch 7 - iter 441/1476 - loss 0.02401158 - time (sec): 28.75 - samples/sec: 1731.71 - lr: 0.000012 - momentum: 0.000000
2023-10-24 10:41:27,278 epoch 7 - iter 588/1476 - loss 0.02052173 - time (sec): 38.01 - samples/sec: 1714.38 - lr: 0.000012 - momentum: 0.000000
2023-10-24 10:41:36,455 epoch 7 - iter 735/1476 - loss 0.01942122 - time (sec): 47.18 - samples/sec: 1703.48 - lr: 0.000012 - momentum: 0.000000
2023-10-24 10:41:46,543 epoch 7 - iter 882/1476 - loss 0.01902328 - time (sec): 57.27 - samples/sec: 1730.36 - lr: 0.000011 - momentum: 0.000000
2023-10-24 10:41:56,034 epoch 7 - iter 1029/1476 - loss 0.01808307 - time (sec): 66.76 - samples/sec: 1730.74 - lr: 0.000011 - momentum: 0.000000
2023-10-24 10:42:05,699 epoch 7 - iter 1176/1476 - loss 0.01833467 - time (sec): 76.43 - samples/sec: 1730.68 - lr: 0.000011 - momentum: 0.000000
2023-10-24 10:42:15,348 epoch 7 - iter 1323/1476 - loss 0.01730497 - time (sec): 86.08 - samples/sec: 1734.66 - lr: 0.000010 - momentum: 0.000000
2023-10-24 10:42:24,846 epoch 7 - iter 1470/1476 - loss 0.01857979 - time (sec): 95.57 - samples/sec: 1734.74 - lr: 0.000010 - momentum: 0.000000
2023-10-24 10:42:25,221 ----------------------------------------------------------------------------------------------------
2023-10-24 10:42:25,221 EPOCH 7 done: loss 0.0186 - lr: 0.000010
2023-10-24 10:42:33,760 DEV : loss 0.2103830873966217 - f1-score (micro avg) 0.8275
2023-10-24 10:42:33,781 saving best model
2023-10-24 10:42:34,480 ----------------------------------------------------------------------------------------------------
2023-10-24 10:42:43,884 epoch 8 - iter 147/1476 - loss 0.01365644 - time (sec): 9.40 - samples/sec: 1696.78 - lr: 0.000010 - momentum: 0.000000
2023-10-24 10:42:53,017 epoch 8 - iter 294/1476 - loss 0.01467945 - time (sec): 18.54 - samples/sec: 1658.43 - lr: 0.000009 - momentum: 0.000000
2023-10-24 10:43:03,240 epoch 8 - iter 441/1476 - loss 0.01419339 - time (sec): 28.76 - samples/sec: 1760.03 - lr: 0.000009 - momentum: 0.000000
2023-10-24 10:43:12,794 epoch 8 - iter 588/1476 - loss 0.01139119 - time (sec): 38.31 - samples/sec: 1760.19 - lr: 0.000009 - momentum: 0.000000
2023-10-24 10:43:22,562 epoch 8 - iter 735/1476 - loss 0.01070596 - time (sec): 48.08 - samples/sec: 1754.76 - lr: 0.000008 - momentum: 0.000000
2023-10-24 10:43:32,626 epoch 8 - iter 882/1476 - loss 0.01177176 - time (sec): 58.15 - samples/sec: 1762.34 - lr: 0.000008 - momentum: 0.000000
2023-10-24 10:43:41,858 epoch 8 - iter 1029/1476 - loss 0.01286942 - time (sec): 67.38 - samples/sec: 1742.60 - lr: 0.000008 - momentum: 0.000000
2023-10-24 10:43:51,105 epoch 8 - iter 1176/1476 - loss 0.01221774 - time (sec): 76.62 - samples/sec: 1735.10 - lr: 0.000007 - momentum: 0.000000
2023-10-24 10:44:00,445 epoch 8 - iter 1323/1476 - loss 0.01176144 - time (sec): 85.96 - samples/sec: 1731.26 - lr: 0.000007 - momentum: 0.000000
2023-10-24 10:44:10,081 epoch 8 - iter 1470/1476 - loss 0.01227108 - time (sec): 95.60 - samples/sec: 1733.60 - lr: 0.000007 - momentum: 0.000000
2023-10-24 10:44:10,447 ----------------------------------------------------------------------------------------------------
2023-10-24 10:44:10,447 EPOCH 8 done: loss 0.0123 - lr: 0.000007
2023-10-24 10:44:19,008 DEV : loss 0.2190389633178711 - f1-score (micro avg) 0.827
2023-10-24 10:44:19,029 ----------------------------------------------------------------------------------------------------
2023-10-24 10:44:28,424 epoch 9 - iter 147/1476 - loss 0.00656723 - time (sec): 9.39 - samples/sec: 1692.09 - lr: 0.000006 - momentum: 0.000000
2023-10-24 10:44:38,241 epoch 9 - iter 294/1476 - loss 0.00522978 - time (sec): 19.21 - samples/sec: 1767.71 - lr: 0.000006 - momentum: 0.000000
2023-10-24 10:44:47,503 epoch 9 - iter 441/1476 - loss 0.00478950 - time (sec): 28.47 - samples/sec: 1720.95 - lr: 0.000006 - momentum: 0.000000
2023-10-24 10:44:56,695 epoch 9 - iter 588/1476 - loss 0.00468800 - time (sec): 37.66 - samples/sec: 1698.76 - lr: 0.000005 - momentum: 0.000000
2023-10-24 10:45:05,920 epoch 9 - iter 735/1476 - loss 0.00606865 - time (sec): 46.89 - samples/sec: 1700.29 - lr: 0.000005 - momentum: 0.000000
2023-10-24 10:45:15,342 epoch 9 - iter 882/1476 - loss 0.00622321 - time (sec): 56.31 - samples/sec: 1699.13 - lr: 0.000005 - momentum: 0.000000
2023-10-24 10:45:24,857 epoch 9 - iter 1029/1476 - loss 0.00584308 - time (sec): 65.83 - samples/sec: 1709.37 - lr: 0.000004 - momentum: 0.000000
2023-10-24 10:45:34,881 epoch 9 - iter 1176/1476 - loss 0.00648079 - time (sec): 75.85 - samples/sec: 1730.03 - lr: 0.000004 - momentum: 0.000000
2023-10-24 10:45:45,039 epoch 9 - iter 1323/1476 - loss 0.00662559 - time (sec): 86.01 - samples/sec: 1738.06 - lr: 0.000004 - momentum: 0.000000
2023-10-24 10:45:54,542 epoch 9 - iter 1470/1476 - loss 0.00685200 - time (sec): 95.51 - samples/sec: 1737.40 - lr: 0.000003 - momentum: 0.000000
2023-10-24 10:45:54,884 ----------------------------------------------------------------------------------------------------
2023-10-24 10:45:54,885 EPOCH 9 done: loss 0.0068 - lr: 0.000003
2023-10-24 10:46:03,440 DEV : loss 0.22385086119174957 - f1-score (micro avg) 0.8342
2023-10-24 10:46:03,462 saving best model
2023-10-24 10:46:04,162 ----------------------------------------------------------------------------------------------------
2023-10-24 10:46:13,588 epoch 10 - iter 147/1476 - loss 0.00352151 - time (sec): 9.42 - samples/sec: 1718.97 - lr: 0.000003 - momentum: 0.000000
2023-10-24 10:46:22,961 epoch 10 - iter 294/1476 - loss 0.00446608 - time (sec): 18.80 - samples/sec: 1702.67 - lr: 0.000003 - momentum: 0.000000
2023-10-24 10:46:32,841 epoch 10 - iter 441/1476 - loss 0.00470680 - time (sec): 28.68 - samples/sec: 1742.15 - lr: 0.000002 - momentum: 0.000000
2023-10-24 10:46:42,528 epoch 10 - iter 588/1476 - loss 0.00484924 - time (sec): 38.36 - samples/sec: 1761.90 - lr: 0.000002 - momentum: 0.000000
2023-10-24 10:46:52,776 epoch 10 - iter 735/1476 - loss 0.00598633 - time (sec): 48.61 - samples/sec: 1776.90 - lr: 0.000002 - momentum: 0.000000
2023-10-24 10:47:02,222 epoch 10 - iter 882/1476 - loss 0.00629805 - time (sec): 58.06 - samples/sec: 1762.31 - lr: 0.000001 - momentum: 0.000000
2023-10-24 10:47:12,020 epoch 10 - iter 1029/1476 - loss 0.00622798 - time (sec): 67.86 - samples/sec: 1757.82 - lr: 0.000001 - momentum: 0.000000
2023-10-24 10:47:21,170 epoch 10 - iter 1176/1476 - loss 0.00617265 - time (sec): 77.01 - samples/sec: 1743.69 - lr: 0.000001 - momentum: 0.000000
2023-10-24 10:47:30,350 epoch 10 - iter 1323/1476 - loss 0.00592236 - time (sec): 86.19 - samples/sec: 1734.52 - lr: 0.000000 - momentum: 0.000000
2023-10-24 10:47:39,701 epoch 10 - iter 1470/1476 - loss 0.00547473 - time (sec): 95.54 - samples/sec: 1736.26 - lr: 0.000000 - momentum: 0.000000
2023-10-24 10:47:40,046 ----------------------------------------------------------------------------------------------------
2023-10-24 10:47:40,046 EPOCH 10 done: loss 0.0055 - lr: 0.000000
2023-10-24 10:47:48,614 DEV : loss 0.22415557503700256 - f1-score (micro avg) 0.8404
2023-10-24 10:47:48,636 saving best model
2023-10-24 10:47:49,932 ----------------------------------------------------------------------------------------------------
2023-10-24 10:47:49,932 Loading model from best epoch ...
2023-10-24 10:47:51,801 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-time, B-time, E-time, I-time, S-prod, B-prod, E-prod, I-prod
2023-10-24 10:47:58,484
Results:
- F-score (micro) 0.7974
- F-score (macro) 0.7083
- Accuracy 0.6897
By class:
precision recall f1-score support
loc 0.8366 0.8893 0.8621 858
pers 0.7656 0.7784 0.7719 537
org 0.5882 0.6061 0.5970 132
prod 0.7018 0.6557 0.6780 61
time 0.5873 0.6852 0.6325 54
micro avg 0.7806 0.8149 0.7974 1642
macro avg 0.6959 0.7229 0.7083 1642
weighted avg 0.7802 0.8149 0.7969 1642
2023-10-24 10:47:58,485 ----------------------------------------------------------------------------------------------------
|