File size: 36,963 Bytes
df7df6d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 |
2023-10-24 10:48:14,850 ----------------------------------------------------------------------------------------------------
2023-10-24 10:48:14,851 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(64001, 768)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
(0): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(1): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(2): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(3): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(4): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(5): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(6): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(7): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(8): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(9): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(10): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(11): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): BertPooler(
(dense): Linear(in_features=768, out_features=768, bias=True)
(activation): Tanh()
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=768, out_features=21, bias=True)
(loss_function): CrossEntropyLoss()
)"
2023-10-24 10:48:14,852 ----------------------------------------------------------------------------------------------------
2023-10-24 10:48:14,852 MultiCorpus: 5901 train + 1287 dev + 1505 test sentences
- NER_HIPE_2022 Corpus: 5901 train + 1287 dev + 1505 test sentences - /home/ubuntu/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/fr/with_doc_seperator
2023-10-24 10:48:14,852 ----------------------------------------------------------------------------------------------------
2023-10-24 10:48:14,852 Train: 5901 sentences
2023-10-24 10:48:14,852 (train_with_dev=False, train_with_test=False)
2023-10-24 10:48:14,852 ----------------------------------------------------------------------------------------------------
2023-10-24 10:48:14,852 Training Params:
2023-10-24 10:48:14,852 - learning_rate: "5e-05"
2023-10-24 10:48:14,852 - mini_batch_size: "4"
2023-10-24 10:48:14,852 - max_epochs: "10"
2023-10-24 10:48:14,852 - shuffle: "True"
2023-10-24 10:48:14,852 ----------------------------------------------------------------------------------------------------
2023-10-24 10:48:14,852 Plugins:
2023-10-24 10:48:14,852 - TensorboardLogger
2023-10-24 10:48:14,852 - LinearScheduler | warmup_fraction: '0.1'
2023-10-24 10:48:14,852 ----------------------------------------------------------------------------------------------------
2023-10-24 10:48:14,852 Final evaluation on model from best epoch (best-model.pt)
2023-10-24 10:48:14,853 - metric: "('micro avg', 'f1-score')"
2023-10-24 10:48:14,853 ----------------------------------------------------------------------------------------------------
2023-10-24 10:48:14,853 Computation:
2023-10-24 10:48:14,853 - compute on device: cuda:0
2023-10-24 10:48:14,853 - embedding storage: none
2023-10-24 10:48:14,853 ----------------------------------------------------------------------------------------------------
2023-10-24 10:48:14,853 Model training base path: "hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3"
2023-10-24 10:48:14,853 ----------------------------------------------------------------------------------------------------
2023-10-24 10:48:14,853 ----------------------------------------------------------------------------------------------------
2023-10-24 10:48:14,853 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-24 10:48:24,098 epoch 1 - iter 147/1476 - loss 1.65586929 - time (sec): 9.24 - samples/sec: 1730.95 - lr: 0.000005 - momentum: 0.000000
2023-10-24 10:48:33,391 epoch 1 - iter 294/1476 - loss 1.07991837 - time (sec): 18.54 - samples/sec: 1711.24 - lr: 0.000010 - momentum: 0.000000
2023-10-24 10:48:42,499 epoch 1 - iter 441/1476 - loss 0.87315512 - time (sec): 27.65 - samples/sec: 1663.26 - lr: 0.000015 - momentum: 0.000000
2023-10-24 10:48:52,399 epoch 1 - iter 588/1476 - loss 0.70884012 - time (sec): 37.55 - samples/sec: 1719.32 - lr: 0.000020 - momentum: 0.000000
2023-10-24 10:49:02,834 epoch 1 - iter 735/1476 - loss 0.59023179 - time (sec): 47.98 - samples/sec: 1759.57 - lr: 0.000025 - momentum: 0.000000
2023-10-24 10:49:12,304 epoch 1 - iter 882/1476 - loss 0.52815123 - time (sec): 57.45 - samples/sec: 1756.99 - lr: 0.000030 - momentum: 0.000000
2023-10-24 10:49:21,617 epoch 1 - iter 1029/1476 - loss 0.48116891 - time (sec): 66.76 - samples/sec: 1748.66 - lr: 0.000035 - momentum: 0.000000
2023-10-24 10:49:31,462 epoch 1 - iter 1176/1476 - loss 0.44141868 - time (sec): 76.61 - samples/sec: 1746.77 - lr: 0.000040 - momentum: 0.000000
2023-10-24 10:49:40,743 epoch 1 - iter 1323/1476 - loss 0.41530887 - time (sec): 85.89 - samples/sec: 1742.31 - lr: 0.000045 - momentum: 0.000000
2023-10-24 10:49:50,281 epoch 1 - iter 1470/1476 - loss 0.38978126 - time (sec): 95.43 - samples/sec: 1738.88 - lr: 0.000050 - momentum: 0.000000
2023-10-24 10:49:50,628 ----------------------------------------------------------------------------------------------------
2023-10-24 10:49:50,629 EPOCH 1 done: loss 0.3891 - lr: 0.000050
2023-10-24 10:49:56,936 DEV : loss 0.13457921147346497 - f1-score (micro avg) 0.7234
2023-10-24 10:49:56,958 saving best model
2023-10-24 10:49:57,516 ----------------------------------------------------------------------------------------------------
2023-10-24 10:50:07,080 epoch 2 - iter 147/1476 - loss 0.12059972 - time (sec): 9.56 - samples/sec: 1765.14 - lr: 0.000049 - momentum: 0.000000
2023-10-24 10:50:16,285 epoch 2 - iter 294/1476 - loss 0.13797220 - time (sec): 18.77 - samples/sec: 1717.67 - lr: 0.000049 - momentum: 0.000000
2023-10-24 10:50:25,463 epoch 2 - iter 441/1476 - loss 0.14905127 - time (sec): 27.95 - samples/sec: 1679.87 - lr: 0.000048 - momentum: 0.000000
2023-10-24 10:50:35,219 epoch 2 - iter 588/1476 - loss 0.14142829 - time (sec): 37.70 - samples/sec: 1704.17 - lr: 0.000048 - momentum: 0.000000
2023-10-24 10:50:44,511 epoch 2 - iter 735/1476 - loss 0.13962946 - time (sec): 46.99 - samples/sec: 1694.23 - lr: 0.000047 - momentum: 0.000000
2023-10-24 10:50:54,152 epoch 2 - iter 882/1476 - loss 0.13959635 - time (sec): 56.63 - samples/sec: 1704.74 - lr: 0.000047 - momentum: 0.000000
2023-10-24 10:51:03,232 epoch 2 - iter 1029/1476 - loss 0.14077252 - time (sec): 65.71 - samples/sec: 1691.49 - lr: 0.000046 - momentum: 0.000000
2023-10-24 10:51:13,264 epoch 2 - iter 1176/1476 - loss 0.13763429 - time (sec): 75.75 - samples/sec: 1725.25 - lr: 0.000046 - momentum: 0.000000
2023-10-24 10:51:23,146 epoch 2 - iter 1323/1476 - loss 0.13938057 - time (sec): 85.63 - samples/sec: 1726.60 - lr: 0.000045 - momentum: 0.000000
2023-10-24 10:51:33,145 epoch 2 - iter 1470/1476 - loss 0.13778830 - time (sec): 95.63 - samples/sec: 1735.50 - lr: 0.000044 - momentum: 0.000000
2023-10-24 10:51:33,492 ----------------------------------------------------------------------------------------------------
2023-10-24 10:51:33,492 EPOCH 2 done: loss 0.1379 - lr: 0.000044
2023-10-24 10:51:42,008 DEV : loss 0.14209164679050446 - f1-score (micro avg) 0.7784
2023-10-24 10:51:42,029 saving best model
2023-10-24 10:51:42,735 ----------------------------------------------------------------------------------------------------
2023-10-24 10:51:52,069 epoch 3 - iter 147/1476 - loss 0.08832162 - time (sec): 9.33 - samples/sec: 1634.07 - lr: 0.000044 - momentum: 0.000000
2023-10-24 10:52:02,054 epoch 3 - iter 294/1476 - loss 0.08724963 - time (sec): 19.32 - samples/sec: 1723.32 - lr: 0.000043 - momentum: 0.000000
2023-10-24 10:52:11,502 epoch 3 - iter 441/1476 - loss 0.08766214 - time (sec): 28.77 - samples/sec: 1709.11 - lr: 0.000043 - momentum: 0.000000
2023-10-24 10:52:21,316 epoch 3 - iter 588/1476 - loss 0.08283332 - time (sec): 38.58 - samples/sec: 1746.55 - lr: 0.000042 - momentum: 0.000000
2023-10-24 10:52:30,589 epoch 3 - iter 735/1476 - loss 0.08143414 - time (sec): 47.85 - samples/sec: 1727.76 - lr: 0.000042 - momentum: 0.000000
2023-10-24 10:52:40,282 epoch 3 - iter 882/1476 - loss 0.08342790 - time (sec): 57.55 - samples/sec: 1738.12 - lr: 0.000041 - momentum: 0.000000
2023-10-24 10:52:49,830 epoch 3 - iter 1029/1476 - loss 0.08223349 - time (sec): 67.09 - samples/sec: 1733.72 - lr: 0.000041 - momentum: 0.000000
2023-10-24 10:52:59,223 epoch 3 - iter 1176/1476 - loss 0.08468750 - time (sec): 76.49 - samples/sec: 1729.40 - lr: 0.000040 - momentum: 0.000000
2023-10-24 10:53:09,193 epoch 3 - iter 1323/1476 - loss 0.09646163 - time (sec): 86.46 - samples/sec: 1745.87 - lr: 0.000039 - momentum: 0.000000
2023-10-24 10:53:18,392 epoch 3 - iter 1470/1476 - loss 0.09593820 - time (sec): 95.66 - samples/sec: 1736.12 - lr: 0.000039 - momentum: 0.000000
2023-10-24 10:53:18,728 ----------------------------------------------------------------------------------------------------
2023-10-24 10:53:18,728 EPOCH 3 done: loss 0.0959 - lr: 0.000039
2023-10-24 10:53:27,143 DEV : loss 0.2701607942581177 - f1-score (micro avg) 0.763
2023-10-24 10:53:27,165 ----------------------------------------------------------------------------------------------------
2023-10-24 10:53:36,810 epoch 4 - iter 147/1476 - loss 0.12417453 - time (sec): 9.64 - samples/sec: 1745.60 - lr: 0.000038 - momentum: 0.000000
2023-10-24 10:53:46,534 epoch 4 - iter 294/1476 - loss 0.12118589 - time (sec): 19.37 - samples/sec: 1811.03 - lr: 0.000038 - momentum: 0.000000
2023-10-24 10:53:56,194 epoch 4 - iter 441/1476 - loss 0.10852964 - time (sec): 29.03 - samples/sec: 1781.74 - lr: 0.000037 - momentum: 0.000000
2023-10-24 10:54:05,524 epoch 4 - iter 588/1476 - loss 0.09519935 - time (sec): 38.36 - samples/sec: 1761.04 - lr: 0.000037 - momentum: 0.000000
2023-10-24 10:54:15,280 epoch 4 - iter 735/1476 - loss 0.09097434 - time (sec): 48.11 - samples/sec: 1766.24 - lr: 0.000036 - momentum: 0.000000
2023-10-24 10:54:24,715 epoch 4 - iter 882/1476 - loss 0.08614100 - time (sec): 57.55 - samples/sec: 1756.63 - lr: 0.000036 - momentum: 0.000000
2023-10-24 10:54:34,696 epoch 4 - iter 1029/1476 - loss 0.09487861 - time (sec): 67.53 - samples/sec: 1762.79 - lr: 0.000035 - momentum: 0.000000
2023-10-24 10:54:44,167 epoch 4 - iter 1176/1476 - loss 0.09394085 - time (sec): 77.00 - samples/sec: 1751.57 - lr: 0.000034 - momentum: 0.000000
2023-10-24 10:54:53,633 epoch 4 - iter 1323/1476 - loss 0.09504047 - time (sec): 86.47 - samples/sec: 1744.04 - lr: 0.000034 - momentum: 0.000000
2023-10-24 10:55:02,882 epoch 4 - iter 1470/1476 - loss 0.09448577 - time (sec): 95.72 - samples/sec: 1731.37 - lr: 0.000033 - momentum: 0.000000
2023-10-24 10:55:03,250 ----------------------------------------------------------------------------------------------------
2023-10-24 10:55:03,251 EPOCH 4 done: loss 0.0948 - lr: 0.000033
2023-10-24 10:55:11,668 DEV : loss 0.27863532304763794 - f1-score (micro avg) 0.7293
2023-10-24 10:55:11,689 ----------------------------------------------------------------------------------------------------
2023-10-24 10:55:21,448 epoch 5 - iter 147/1476 - loss 0.07291799 - time (sec): 9.76 - samples/sec: 1737.92 - lr: 0.000033 - momentum: 0.000000
2023-10-24 10:55:31,095 epoch 5 - iter 294/1476 - loss 0.11773689 - time (sec): 19.40 - samples/sec: 1770.59 - lr: 0.000032 - momentum: 0.000000
2023-10-24 10:55:40,949 epoch 5 - iter 441/1476 - loss 0.09833702 - time (sec): 29.26 - samples/sec: 1776.56 - lr: 0.000032 - momentum: 0.000000
2023-10-24 10:55:50,119 epoch 5 - iter 588/1476 - loss 0.08337112 - time (sec): 38.43 - samples/sec: 1746.88 - lr: 0.000031 - momentum: 0.000000
2023-10-24 10:56:00,122 epoch 5 - iter 735/1476 - loss 0.08978486 - time (sec): 48.43 - samples/sec: 1745.69 - lr: 0.000031 - momentum: 0.000000
2023-10-24 10:56:09,225 epoch 5 - iter 882/1476 - loss 0.08167065 - time (sec): 57.54 - samples/sec: 1723.59 - lr: 0.000030 - momentum: 0.000000
2023-10-24 10:56:18,288 epoch 5 - iter 1029/1476 - loss 0.07871689 - time (sec): 66.60 - samples/sec: 1719.04 - lr: 0.000029 - momentum: 0.000000
2023-10-24 10:56:27,625 epoch 5 - iter 1176/1476 - loss 0.07299931 - time (sec): 75.93 - samples/sec: 1704.49 - lr: 0.000029 - momentum: 0.000000
2023-10-24 10:56:37,116 epoch 5 - iter 1323/1476 - loss 0.07223057 - time (sec): 85.43 - samples/sec: 1710.28 - lr: 0.000028 - momentum: 0.000000
2023-10-24 10:56:47,474 epoch 5 - iter 1470/1476 - loss 0.07846900 - time (sec): 95.78 - samples/sec: 1733.07 - lr: 0.000028 - momentum: 0.000000
2023-10-24 10:56:47,814 ----------------------------------------------------------------------------------------------------
2023-10-24 10:56:47,815 EPOCH 5 done: loss 0.0784 - lr: 0.000028
2023-10-24 10:56:56,241 DEV : loss 0.25809499621391296 - f1-score (micro avg) 0.7499
2023-10-24 10:56:56,262 ----------------------------------------------------------------------------------------------------
2023-10-24 10:57:06,035 epoch 6 - iter 147/1476 - loss 0.05313087 - time (sec): 9.77 - samples/sec: 1824.29 - lr: 0.000027 - momentum: 0.000000
2023-10-24 10:57:15,603 epoch 6 - iter 294/1476 - loss 0.05439273 - time (sec): 19.34 - samples/sec: 1747.91 - lr: 0.000027 - momentum: 0.000000
2023-10-24 10:57:25,156 epoch 6 - iter 441/1476 - loss 0.04903707 - time (sec): 28.89 - samples/sec: 1733.35 - lr: 0.000026 - momentum: 0.000000
2023-10-24 10:57:34,744 epoch 6 - iter 588/1476 - loss 0.05877384 - time (sec): 38.48 - samples/sec: 1734.92 - lr: 0.000026 - momentum: 0.000000
2023-10-24 10:57:44,061 epoch 6 - iter 735/1476 - loss 0.05051822 - time (sec): 47.80 - samples/sec: 1727.89 - lr: 0.000025 - momentum: 0.000000
2023-10-24 10:57:53,790 epoch 6 - iter 882/1476 - loss 0.04679481 - time (sec): 57.53 - samples/sec: 1737.86 - lr: 0.000024 - momentum: 0.000000
2023-10-24 10:58:03,065 epoch 6 - iter 1029/1476 - loss 0.04646404 - time (sec): 66.80 - samples/sec: 1721.46 - lr: 0.000024 - momentum: 0.000000
2023-10-24 10:58:12,451 epoch 6 - iter 1176/1476 - loss 0.05002079 - time (sec): 76.19 - samples/sec: 1723.74 - lr: 0.000023 - momentum: 0.000000
2023-10-24 10:58:22,558 epoch 6 - iter 1323/1476 - loss 0.06170524 - time (sec): 86.30 - samples/sec: 1736.56 - lr: 0.000023 - momentum: 0.000000
2023-10-24 10:58:32,083 epoch 6 - iter 1470/1476 - loss 0.06160170 - time (sec): 95.82 - samples/sec: 1731.81 - lr: 0.000022 - momentum: 0.000000
2023-10-24 10:58:32,426 ----------------------------------------------------------------------------------------------------
2023-10-24 10:58:32,427 EPOCH 6 done: loss 0.0614 - lr: 0.000022
2023-10-24 10:58:40,876 DEV : loss 0.2634078860282898 - f1-score (micro avg) 0.772
2023-10-24 10:58:40,897 ----------------------------------------------------------------------------------------------------
2023-10-24 10:58:50,465 epoch 7 - iter 147/1476 - loss 0.04507495 - time (sec): 9.57 - samples/sec: 1717.08 - lr: 0.000022 - momentum: 0.000000
2023-10-24 10:58:59,978 epoch 7 - iter 294/1476 - loss 0.04197351 - time (sec): 19.08 - samples/sec: 1702.46 - lr: 0.000021 - momentum: 0.000000
2023-10-24 10:59:09,686 epoch 7 - iter 441/1476 - loss 0.06505740 - time (sec): 28.79 - samples/sec: 1729.16 - lr: 0.000021 - momentum: 0.000000
2023-10-24 10:59:18,963 epoch 7 - iter 588/1476 - loss 0.05418034 - time (sec): 38.07 - samples/sec: 1711.68 - lr: 0.000020 - momentum: 0.000000
2023-10-24 10:59:28,157 epoch 7 - iter 735/1476 - loss 0.04622712 - time (sec): 47.26 - samples/sec: 1700.72 - lr: 0.000019 - momentum: 0.000000
2023-10-24 10:59:38,265 epoch 7 - iter 882/1476 - loss 0.05893413 - time (sec): 57.37 - samples/sec: 1727.44 - lr: 0.000019 - momentum: 0.000000
2023-10-24 10:59:47,775 epoch 7 - iter 1029/1476 - loss 0.05878999 - time (sec): 66.88 - samples/sec: 1727.73 - lr: 0.000018 - momentum: 0.000000
2023-10-24 10:59:57,450 epoch 7 - iter 1176/1476 - loss 0.05964465 - time (sec): 76.55 - samples/sec: 1727.83 - lr: 0.000018 - momentum: 0.000000
2023-10-24 11:00:07,100 epoch 7 - iter 1323/1476 - loss 0.05826532 - time (sec): 86.20 - samples/sec: 1732.09 - lr: 0.000017 - momentum: 0.000000
2023-10-24 11:00:16,614 epoch 7 - iter 1470/1476 - loss 0.06281126 - time (sec): 95.72 - samples/sec: 1732.15 - lr: 0.000017 - momentum: 0.000000
2023-10-24 11:00:16,990 ----------------------------------------------------------------------------------------------------
2023-10-24 11:00:16,990 EPOCH 7 done: loss 0.0626 - lr: 0.000017
2023-10-24 11:00:25,435 DEV : loss 0.27169960737228394 - f1-score (micro avg) 0.7652
2023-10-24 11:00:25,457 ----------------------------------------------------------------------------------------------------
2023-10-24 11:00:34,865 epoch 8 - iter 147/1476 - loss 0.04542037 - time (sec): 9.41 - samples/sec: 1696.00 - lr: 0.000016 - momentum: 0.000000
2023-10-24 11:00:44,003 epoch 8 - iter 294/1476 - loss 0.02861702 - time (sec): 18.55 - samples/sec: 1657.60 - lr: 0.000016 - momentum: 0.000000
2023-10-24 11:00:54,239 epoch 8 - iter 441/1476 - loss 0.06281701 - time (sec): 28.78 - samples/sec: 1758.67 - lr: 0.000015 - momentum: 0.000000
2023-10-24 11:01:03,793 epoch 8 - iter 588/1476 - loss 0.05883833 - time (sec): 38.34 - samples/sec: 1759.21 - lr: 0.000014 - momentum: 0.000000
2023-10-24 11:01:13,566 epoch 8 - iter 735/1476 - loss 0.05103042 - time (sec): 48.11 - samples/sec: 1753.77 - lr: 0.000014 - momentum: 0.000000
2023-10-24 11:01:23,641 epoch 8 - iter 882/1476 - loss 0.05585751 - time (sec): 58.18 - samples/sec: 1761.22 - lr: 0.000013 - momentum: 0.000000
2023-10-24 11:01:32,886 epoch 8 - iter 1029/1476 - loss 0.05420164 - time (sec): 67.43 - samples/sec: 1741.28 - lr: 0.000013 - momentum: 0.000000
2023-10-24 11:01:42,145 epoch 8 - iter 1176/1476 - loss 0.05014942 - time (sec): 76.69 - samples/sec: 1733.69 - lr: 0.000012 - momentum: 0.000000
2023-10-24 11:01:51,484 epoch 8 - iter 1323/1476 - loss 0.04821620 - time (sec): 86.03 - samples/sec: 1730.02 - lr: 0.000012 - momentum: 0.000000
2023-10-24 11:02:01,128 epoch 8 - iter 1470/1476 - loss 0.04480348 - time (sec): 95.67 - samples/sec: 1732.32 - lr: 0.000011 - momentum: 0.000000
2023-10-24 11:02:01,495 ----------------------------------------------------------------------------------------------------
2023-10-24 11:02:01,495 EPOCH 8 done: loss 0.0447 - lr: 0.000011
2023-10-24 11:02:09,941 DEV : loss 0.30274227261543274 - f1-score (micro avg) 0.7626
2023-10-24 11:02:09,962 ----------------------------------------------------------------------------------------------------
2023-10-24 11:02:19,368 epoch 9 - iter 147/1476 - loss 0.02455183 - time (sec): 9.40 - samples/sec: 1690.22 - lr: 0.000011 - momentum: 0.000000
2023-10-24 11:02:29,184 epoch 9 - iter 294/1476 - loss 0.02908119 - time (sec): 19.22 - samples/sec: 1766.79 - lr: 0.000010 - momentum: 0.000000
2023-10-24 11:02:38,447 epoch 9 - iter 441/1476 - loss 0.03060954 - time (sec): 28.48 - samples/sec: 1720.29 - lr: 0.000009 - momentum: 0.000000
2023-10-24 11:02:47,999 epoch 9 - iter 588/1476 - loss 0.02637177 - time (sec): 38.04 - samples/sec: 1682.20 - lr: 0.000009 - momentum: 0.000000
2023-10-24 11:02:57,224 epoch 9 - iter 735/1476 - loss 0.02532292 - time (sec): 47.26 - samples/sec: 1686.95 - lr: 0.000008 - momentum: 0.000000
2023-10-24 11:03:06,638 epoch 9 - iter 882/1476 - loss 0.02620936 - time (sec): 56.67 - samples/sec: 1688.27 - lr: 0.000008 - momentum: 0.000000
2023-10-24 11:03:16,146 epoch 9 - iter 1029/1476 - loss 0.02456485 - time (sec): 66.18 - samples/sec: 1700.19 - lr: 0.000007 - momentum: 0.000000
2023-10-24 11:03:26,166 epoch 9 - iter 1176/1476 - loss 0.03675836 - time (sec): 76.20 - samples/sec: 1722.03 - lr: 0.000007 - momentum: 0.000000
2023-10-24 11:03:36,323 epoch 9 - iter 1323/1476 - loss 0.04061899 - time (sec): 86.36 - samples/sec: 1730.99 - lr: 0.000006 - momentum: 0.000000
2023-10-24 11:03:45,828 epoch 9 - iter 1470/1476 - loss 0.04002423 - time (sec): 95.86 - samples/sec: 1731.00 - lr: 0.000006 - momentum: 0.000000
2023-10-24 11:03:46,171 ----------------------------------------------------------------------------------------------------
2023-10-24 11:03:46,171 EPOCH 9 done: loss 0.0399 - lr: 0.000006
2023-10-24 11:03:54,596 DEV : loss 0.2963683307170868 - f1-score (micro avg) 0.7703
2023-10-24 11:03:54,618 ----------------------------------------------------------------------------------------------------
2023-10-24 11:04:04,051 epoch 10 - iter 147/1476 - loss 0.02704804 - time (sec): 9.43 - samples/sec: 1717.54 - lr: 0.000005 - momentum: 0.000000
2023-10-24 11:04:13,428 epoch 10 - iter 294/1476 - loss 0.02279645 - time (sec): 18.81 - samples/sec: 1701.66 - lr: 0.000004 - momentum: 0.000000
2023-10-24 11:04:23,321 epoch 10 - iter 441/1476 - loss 0.02018937 - time (sec): 28.70 - samples/sec: 1740.66 - lr: 0.000004 - momentum: 0.000000
2023-10-24 11:04:33,017 epoch 10 - iter 588/1476 - loss 0.02530081 - time (sec): 38.40 - samples/sec: 1760.38 - lr: 0.000003 - momentum: 0.000000
2023-10-24 11:04:43,267 epoch 10 - iter 735/1476 - loss 0.04049497 - time (sec): 48.65 - samples/sec: 1775.63 - lr: 0.000003 - momentum: 0.000000
2023-10-24 11:04:52,714 epoch 10 - iter 882/1476 - loss 0.04282402 - time (sec): 58.10 - samples/sec: 1761.20 - lr: 0.000002 - momentum: 0.000000
2023-10-24 11:05:02,523 epoch 10 - iter 1029/1476 - loss 0.04621028 - time (sec): 67.90 - samples/sec: 1756.59 - lr: 0.000002 - momentum: 0.000000
2023-10-24 11:05:11,678 epoch 10 - iter 1176/1476 - loss 0.04170952 - time (sec): 77.06 - samples/sec: 1742.51 - lr: 0.000001 - momentum: 0.000000
2023-10-24 11:05:20,869 epoch 10 - iter 1323/1476 - loss 0.03916033 - time (sec): 86.25 - samples/sec: 1733.25 - lr: 0.000001 - momentum: 0.000000
2023-10-24 11:05:30,215 epoch 10 - iter 1470/1476 - loss 0.03566834 - time (sec): 95.60 - samples/sec: 1735.21 - lr: 0.000000 - momentum: 0.000000
2023-10-24 11:05:30,559 ----------------------------------------------------------------------------------------------------
2023-10-24 11:05:30,559 EPOCH 10 done: loss 0.0356 - lr: 0.000000
2023-10-24 11:05:39,016 DEV : loss 0.30029311776161194 - f1-score (micro avg) 0.7695
2023-10-24 11:05:39,590 ----------------------------------------------------------------------------------------------------
2023-10-24 11:05:39,590 Loading model from best epoch ...
2023-10-24 11:05:41,453 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-time, B-time, E-time, I-time, S-prod, B-prod, E-prod, I-prod
2023-10-24 11:05:47,732
Results:
- F-score (micro) 0.7379
- F-score (macro) 0.6047
- Accuracy 0.6102
By class:
precision recall f1-score support
loc 0.8307 0.8520 0.8412 858
pers 0.6764 0.6927 0.6845 537
org 0.4410 0.5379 0.4846 132
time 0.5147 0.6481 0.5738 54
prod 0.6667 0.3279 0.4396 61
micro avg 0.7276 0.7485 0.7379 1642
macro avg 0.6259 0.6117 0.6047 1642
weighted avg 0.7324 0.7485 0.7376 1642
2023-10-24 11:05:47,732 ----------------------------------------------------------------------------------------------------
|