File size: 37,026 Bytes
9c24de4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 |
2023-10-24 13:26:12,906 ----------------------------------------------------------------------------------------------------
2023-10-24 13:26:12,907 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(64001, 768)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
(0): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(1): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(2): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(3): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(4): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(5): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(6): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(7): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(8): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(9): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(10): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(11): BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): BertPooler(
(dense): Linear(in_features=768, out_features=768, bias=True)
(activation): Tanh()
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=768, out_features=21, bias=True)
(loss_function): CrossEntropyLoss()
)"
2023-10-24 13:26:12,907 ----------------------------------------------------------------------------------------------------
2023-10-24 13:26:12,907 MultiCorpus: 5901 train + 1287 dev + 1505 test sentences
- NER_HIPE_2022 Corpus: 5901 train + 1287 dev + 1505 test sentences - /home/ubuntu/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/fr/with_doc_seperator
2023-10-24 13:26:12,907 ----------------------------------------------------------------------------------------------------
2023-10-24 13:26:12,907 Train: 5901 sentences
2023-10-24 13:26:12,907 (train_with_dev=False, train_with_test=False)
2023-10-24 13:26:12,907 ----------------------------------------------------------------------------------------------------
2023-10-24 13:26:12,907 Training Params:
2023-10-24 13:26:12,907 - learning_rate: "5e-05"
2023-10-24 13:26:12,907 - mini_batch_size: "8"
2023-10-24 13:26:12,907 - max_epochs: "10"
2023-10-24 13:26:12,907 - shuffle: "True"
2023-10-24 13:26:12,907 ----------------------------------------------------------------------------------------------------
2023-10-24 13:26:12,907 Plugins:
2023-10-24 13:26:12,907 - TensorboardLogger
2023-10-24 13:26:12,907 - LinearScheduler | warmup_fraction: '0.1'
2023-10-24 13:26:12,907 ----------------------------------------------------------------------------------------------------
2023-10-24 13:26:12,907 Final evaluation on model from best epoch (best-model.pt)
2023-10-24 13:26:12,907 - metric: "('micro avg', 'f1-score')"
2023-10-24 13:26:12,907 ----------------------------------------------------------------------------------------------------
2023-10-24 13:26:12,907 Computation:
2023-10-24 13:26:12,907 - compute on device: cuda:0
2023-10-24 13:26:12,907 - embedding storage: none
2023-10-24 13:26:12,907 ----------------------------------------------------------------------------------------------------
2023-10-24 13:26:12,908 Model training base path: "hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5"
2023-10-24 13:26:12,908 ----------------------------------------------------------------------------------------------------
2023-10-24 13:26:12,908 ----------------------------------------------------------------------------------------------------
2023-10-24 13:26:12,908 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-24 13:26:19,585 epoch 1 - iter 73/738 - loss 1.87843397 - time (sec): 6.68 - samples/sec: 2355.81 - lr: 0.000005 - momentum: 0.000000
2023-10-24 13:26:26,648 epoch 1 - iter 146/738 - loss 1.23669691 - time (sec): 13.74 - samples/sec: 2287.20 - lr: 0.000010 - momentum: 0.000000
2023-10-24 13:26:33,333 epoch 1 - iter 219/738 - loss 0.95046007 - time (sec): 20.42 - samples/sec: 2293.57 - lr: 0.000015 - momentum: 0.000000
2023-10-24 13:26:39,552 epoch 1 - iter 292/738 - loss 0.78741929 - time (sec): 26.64 - samples/sec: 2325.13 - lr: 0.000020 - momentum: 0.000000
2023-10-24 13:26:47,678 epoch 1 - iter 365/738 - loss 0.66312271 - time (sec): 34.77 - samples/sec: 2330.02 - lr: 0.000025 - momentum: 0.000000
2023-10-24 13:26:54,437 epoch 1 - iter 438/738 - loss 0.58329828 - time (sec): 41.53 - samples/sec: 2361.83 - lr: 0.000030 - momentum: 0.000000
2023-10-24 13:27:01,634 epoch 1 - iter 511/738 - loss 0.52013512 - time (sec): 48.73 - samples/sec: 2367.86 - lr: 0.000035 - momentum: 0.000000
2023-10-24 13:27:08,503 epoch 1 - iter 584/738 - loss 0.47832610 - time (sec): 55.59 - samples/sec: 2361.41 - lr: 0.000039 - momentum: 0.000000
2023-10-24 13:27:15,950 epoch 1 - iter 657/738 - loss 0.44013722 - time (sec): 63.04 - samples/sec: 2355.32 - lr: 0.000044 - momentum: 0.000000
2023-10-24 13:27:22,402 epoch 1 - iter 730/738 - loss 0.41193232 - time (sec): 69.49 - samples/sec: 2358.74 - lr: 0.000049 - momentum: 0.000000
2023-10-24 13:27:23,423 ----------------------------------------------------------------------------------------------------
2023-10-24 13:27:23,423 EPOCH 1 done: loss 0.4080 - lr: 0.000049
2023-10-24 13:27:29,681 DEV : loss 0.10953915119171143 - f1-score (micro avg) 0.6996
2023-10-24 13:27:29,702 saving best model
2023-10-24 13:27:30,252 ----------------------------------------------------------------------------------------------------
2023-10-24 13:27:36,790 epoch 2 - iter 73/738 - loss 0.12856043 - time (sec): 6.54 - samples/sec: 2401.39 - lr: 0.000049 - momentum: 0.000000
2023-10-24 13:27:43,668 epoch 2 - iter 146/738 - loss 0.12842399 - time (sec): 13.42 - samples/sec: 2351.92 - lr: 0.000049 - momentum: 0.000000
2023-10-24 13:27:50,487 epoch 2 - iter 219/738 - loss 0.12815504 - time (sec): 20.23 - samples/sec: 2361.80 - lr: 0.000048 - momentum: 0.000000
2023-10-24 13:27:57,248 epoch 2 - iter 292/738 - loss 0.12409229 - time (sec): 27.00 - samples/sec: 2339.92 - lr: 0.000048 - momentum: 0.000000
2023-10-24 13:28:03,997 epoch 2 - iter 365/738 - loss 0.12199118 - time (sec): 33.74 - samples/sec: 2347.12 - lr: 0.000047 - momentum: 0.000000
2023-10-24 13:28:10,826 epoch 2 - iter 438/738 - loss 0.11973631 - time (sec): 40.57 - samples/sec: 2342.24 - lr: 0.000047 - momentum: 0.000000
2023-10-24 13:28:18,157 epoch 2 - iter 511/738 - loss 0.12078151 - time (sec): 47.90 - samples/sec: 2360.10 - lr: 0.000046 - momentum: 0.000000
2023-10-24 13:28:25,872 epoch 2 - iter 584/738 - loss 0.11713377 - time (sec): 55.62 - samples/sec: 2358.47 - lr: 0.000046 - momentum: 0.000000
2023-10-24 13:28:32,609 epoch 2 - iter 657/738 - loss 0.11656313 - time (sec): 62.36 - samples/sec: 2357.16 - lr: 0.000045 - momentum: 0.000000
2023-10-24 13:28:40,269 epoch 2 - iter 730/738 - loss 0.11463726 - time (sec): 70.02 - samples/sec: 2350.59 - lr: 0.000045 - momentum: 0.000000
2023-10-24 13:28:41,017 ----------------------------------------------------------------------------------------------------
2023-10-24 13:28:41,017 EPOCH 2 done: loss 0.1145 - lr: 0.000045
2023-10-24 13:28:49,488 DEV : loss 0.11087270081043243 - f1-score (micro avg) 0.7895
2023-10-24 13:28:49,509 saving best model
2023-10-24 13:28:50,218 ----------------------------------------------------------------------------------------------------
2023-10-24 13:28:56,322 epoch 3 - iter 73/738 - loss 0.05848905 - time (sec): 6.10 - samples/sec: 2528.26 - lr: 0.000044 - momentum: 0.000000
2023-10-24 13:29:03,544 epoch 3 - iter 146/738 - loss 0.06303135 - time (sec): 13.33 - samples/sec: 2409.83 - lr: 0.000043 - momentum: 0.000000
2023-10-24 13:29:11,131 epoch 3 - iter 219/738 - loss 0.06634706 - time (sec): 20.91 - samples/sec: 2351.64 - lr: 0.000043 - momentum: 0.000000
2023-10-24 13:29:18,504 epoch 3 - iter 292/738 - loss 0.06169395 - time (sec): 28.28 - samples/sec: 2350.13 - lr: 0.000042 - momentum: 0.000000
2023-10-24 13:29:25,686 epoch 3 - iter 365/738 - loss 0.06197945 - time (sec): 35.47 - samples/sec: 2337.71 - lr: 0.000042 - momentum: 0.000000
2023-10-24 13:29:32,841 epoch 3 - iter 438/738 - loss 0.06398829 - time (sec): 42.62 - samples/sec: 2338.06 - lr: 0.000041 - momentum: 0.000000
2023-10-24 13:29:39,705 epoch 3 - iter 511/738 - loss 0.06397235 - time (sec): 49.49 - samples/sec: 2340.00 - lr: 0.000041 - momentum: 0.000000
2023-10-24 13:29:46,062 epoch 3 - iter 584/738 - loss 0.06498214 - time (sec): 55.84 - samples/sec: 2350.07 - lr: 0.000040 - momentum: 0.000000
2023-10-24 13:29:52,694 epoch 3 - iter 657/738 - loss 0.06519288 - time (sec): 62.48 - samples/sec: 2347.72 - lr: 0.000040 - momentum: 0.000000
2023-10-24 13:29:59,865 epoch 3 - iter 730/738 - loss 0.06817157 - time (sec): 69.65 - samples/sec: 2355.77 - lr: 0.000039 - momentum: 0.000000
2023-10-24 13:30:01,021 ----------------------------------------------------------------------------------------------------
2023-10-24 13:30:01,021 EPOCH 3 done: loss 0.0681 - lr: 0.000039
2023-10-24 13:30:09,509 DEV : loss 0.11597760021686554 - f1-score (micro avg) 0.8001
2023-10-24 13:30:09,530 saving best model
2023-10-24 13:30:10,242 ----------------------------------------------------------------------------------------------------
2023-10-24 13:30:16,724 epoch 4 - iter 73/738 - loss 0.04098436 - time (sec): 6.48 - samples/sec: 2324.44 - lr: 0.000038 - momentum: 0.000000
2023-10-24 13:30:23,121 epoch 4 - iter 146/738 - loss 0.04478723 - time (sec): 12.88 - samples/sec: 2354.37 - lr: 0.000038 - momentum: 0.000000
2023-10-24 13:30:29,752 epoch 4 - iter 219/738 - loss 0.04880260 - time (sec): 19.51 - samples/sec: 2348.94 - lr: 0.000037 - momentum: 0.000000
2023-10-24 13:30:36,153 epoch 4 - iter 292/738 - loss 0.04742649 - time (sec): 25.91 - samples/sec: 2352.20 - lr: 0.000037 - momentum: 0.000000
2023-10-24 13:30:43,540 epoch 4 - iter 365/738 - loss 0.05043582 - time (sec): 33.30 - samples/sec: 2364.88 - lr: 0.000036 - momentum: 0.000000
2023-10-24 13:30:51,397 epoch 4 - iter 438/738 - loss 0.05054486 - time (sec): 41.15 - samples/sec: 2350.36 - lr: 0.000036 - momentum: 0.000000
2023-10-24 13:30:59,099 epoch 4 - iter 511/738 - loss 0.04763501 - time (sec): 48.86 - samples/sec: 2349.85 - lr: 0.000035 - momentum: 0.000000
2023-10-24 13:31:06,696 epoch 4 - iter 584/738 - loss 0.04763938 - time (sec): 56.45 - samples/sec: 2357.22 - lr: 0.000035 - momentum: 0.000000
2023-10-24 13:31:13,947 epoch 4 - iter 657/738 - loss 0.04791332 - time (sec): 63.70 - samples/sec: 2351.16 - lr: 0.000034 - momentum: 0.000000
2023-10-24 13:31:20,299 epoch 4 - iter 730/738 - loss 0.04703381 - time (sec): 70.06 - samples/sec: 2353.03 - lr: 0.000033 - momentum: 0.000000
2023-10-24 13:31:20,938 ----------------------------------------------------------------------------------------------------
2023-10-24 13:31:20,938 EPOCH 4 done: loss 0.0472 - lr: 0.000033
2023-10-24 13:31:29,454 DEV : loss 0.1576639711856842 - f1-score (micro avg) 0.8054
2023-10-24 13:31:29,475 saving best model
2023-10-24 13:31:30,138 ----------------------------------------------------------------------------------------------------
2023-10-24 13:31:36,865 epoch 5 - iter 73/738 - loss 0.03814569 - time (sec): 6.73 - samples/sec: 2415.22 - lr: 0.000033 - momentum: 0.000000
2023-10-24 13:31:44,135 epoch 5 - iter 146/738 - loss 0.03447645 - time (sec): 14.00 - samples/sec: 2422.92 - lr: 0.000032 - momentum: 0.000000
2023-10-24 13:31:51,116 epoch 5 - iter 219/738 - loss 0.03261789 - time (sec): 20.98 - samples/sec: 2354.95 - lr: 0.000032 - momentum: 0.000000
2023-10-24 13:31:57,985 epoch 5 - iter 292/738 - loss 0.03744440 - time (sec): 27.85 - samples/sec: 2360.46 - lr: 0.000031 - momentum: 0.000000
2023-10-24 13:32:05,585 epoch 5 - iter 365/738 - loss 0.03675531 - time (sec): 35.45 - samples/sec: 2368.90 - lr: 0.000031 - momentum: 0.000000
2023-10-24 13:32:12,307 epoch 5 - iter 438/738 - loss 0.03564464 - time (sec): 42.17 - samples/sec: 2369.51 - lr: 0.000030 - momentum: 0.000000
2023-10-24 13:32:18,805 epoch 5 - iter 511/738 - loss 0.03487785 - time (sec): 48.67 - samples/sec: 2360.38 - lr: 0.000030 - momentum: 0.000000
2023-10-24 13:32:26,703 epoch 5 - iter 584/738 - loss 0.03512836 - time (sec): 56.56 - samples/sec: 2340.57 - lr: 0.000029 - momentum: 0.000000
2023-10-24 13:32:33,278 epoch 5 - iter 657/738 - loss 0.03480734 - time (sec): 63.14 - samples/sec: 2353.68 - lr: 0.000028 - momentum: 0.000000
2023-10-24 13:32:40,558 epoch 5 - iter 730/738 - loss 0.03464501 - time (sec): 70.42 - samples/sec: 2341.86 - lr: 0.000028 - momentum: 0.000000
2023-10-24 13:32:41,297 ----------------------------------------------------------------------------------------------------
2023-10-24 13:32:41,298 EPOCH 5 done: loss 0.0346 - lr: 0.000028
2023-10-24 13:32:49,820 DEV : loss 0.17847341299057007 - f1-score (micro avg) 0.8278
2023-10-24 13:32:49,842 saving best model
2023-10-24 13:32:50,561 ----------------------------------------------------------------------------------------------------
2023-10-24 13:32:57,858 epoch 6 - iter 73/738 - loss 0.01898276 - time (sec): 7.30 - samples/sec: 2357.37 - lr: 0.000027 - momentum: 0.000000
2023-10-24 13:33:03,897 epoch 6 - iter 146/738 - loss 0.02062329 - time (sec): 13.34 - samples/sec: 2388.72 - lr: 0.000027 - momentum: 0.000000
2023-10-24 13:33:11,244 epoch 6 - iter 219/738 - loss 0.01861392 - time (sec): 20.68 - samples/sec: 2330.38 - lr: 0.000026 - momentum: 0.000000
2023-10-24 13:33:19,200 epoch 6 - iter 292/738 - loss 0.02328625 - time (sec): 28.64 - samples/sec: 2365.49 - lr: 0.000026 - momentum: 0.000000
2023-10-24 13:33:25,704 epoch 6 - iter 365/738 - loss 0.02353453 - time (sec): 35.14 - samples/sec: 2361.28 - lr: 0.000025 - momentum: 0.000000
2023-10-24 13:33:32,111 epoch 6 - iter 438/738 - loss 0.02268378 - time (sec): 41.55 - samples/sec: 2356.15 - lr: 0.000025 - momentum: 0.000000
2023-10-24 13:33:38,223 epoch 6 - iter 511/738 - loss 0.02475660 - time (sec): 47.66 - samples/sec: 2350.05 - lr: 0.000024 - momentum: 0.000000
2023-10-24 13:33:45,381 epoch 6 - iter 584/738 - loss 0.02481615 - time (sec): 54.82 - samples/sec: 2350.71 - lr: 0.000023 - momentum: 0.000000
2023-10-24 13:33:53,219 epoch 6 - iter 657/738 - loss 0.02437100 - time (sec): 62.66 - samples/sec: 2352.59 - lr: 0.000023 - momentum: 0.000000
2023-10-24 13:34:00,631 epoch 6 - iter 730/738 - loss 0.02404331 - time (sec): 70.07 - samples/sec: 2350.44 - lr: 0.000022 - momentum: 0.000000
2023-10-24 13:34:01,283 ----------------------------------------------------------------------------------------------------
2023-10-24 13:34:01,284 EPOCH 6 done: loss 0.0239 - lr: 0.000022
2023-10-24 13:34:09,822 DEV : loss 0.19103363156318665 - f1-score (micro avg) 0.8177
2023-10-24 13:34:09,844 ----------------------------------------------------------------------------------------------------
2023-10-24 13:34:17,437 epoch 7 - iter 73/738 - loss 0.01986646 - time (sec): 7.59 - samples/sec: 2506.14 - lr: 0.000022 - momentum: 0.000000
2023-10-24 13:34:24,923 epoch 7 - iter 146/738 - loss 0.01706995 - time (sec): 15.08 - samples/sec: 2406.26 - lr: 0.000021 - momentum: 0.000000
2023-10-24 13:34:31,695 epoch 7 - iter 219/738 - loss 0.01522152 - time (sec): 21.85 - samples/sec: 2366.54 - lr: 0.000021 - momentum: 0.000000
2023-10-24 13:34:38,753 epoch 7 - iter 292/738 - loss 0.01709441 - time (sec): 28.91 - samples/sec: 2354.77 - lr: 0.000020 - momentum: 0.000000
2023-10-24 13:34:45,228 epoch 7 - iter 365/738 - loss 0.01655309 - time (sec): 35.38 - samples/sec: 2363.51 - lr: 0.000020 - momentum: 0.000000
2023-10-24 13:34:51,955 epoch 7 - iter 438/738 - loss 0.01608348 - time (sec): 42.11 - samples/sec: 2356.84 - lr: 0.000019 - momentum: 0.000000
2023-10-24 13:34:58,690 epoch 7 - iter 511/738 - loss 0.01628481 - time (sec): 48.84 - samples/sec: 2347.12 - lr: 0.000018 - momentum: 0.000000
2023-10-24 13:35:04,990 epoch 7 - iter 584/738 - loss 0.01670341 - time (sec): 55.15 - samples/sec: 2345.70 - lr: 0.000018 - momentum: 0.000000
2023-10-24 13:35:13,111 epoch 7 - iter 657/738 - loss 0.01686839 - time (sec): 63.27 - samples/sec: 2348.50 - lr: 0.000017 - momentum: 0.000000
2023-10-24 13:35:20,233 epoch 7 - iter 730/738 - loss 0.01751030 - time (sec): 70.39 - samples/sec: 2338.05 - lr: 0.000017 - momentum: 0.000000
2023-10-24 13:35:20,903 ----------------------------------------------------------------------------------------------------
2023-10-24 13:35:20,903 EPOCH 7 done: loss 0.0175 - lr: 0.000017
2023-10-24 13:35:29,453 DEV : loss 0.19701939821243286 - f1-score (micro avg) 0.8147
2023-10-24 13:35:29,474 ----------------------------------------------------------------------------------------------------
2023-10-24 13:35:36,177 epoch 8 - iter 73/738 - loss 0.00499695 - time (sec): 6.70 - samples/sec: 2239.76 - lr: 0.000016 - momentum: 0.000000
2023-10-24 13:35:43,356 epoch 8 - iter 146/738 - loss 0.00716743 - time (sec): 13.88 - samples/sec: 2271.84 - lr: 0.000016 - momentum: 0.000000
2023-10-24 13:35:50,568 epoch 8 - iter 219/738 - loss 0.00825664 - time (sec): 21.09 - samples/sec: 2323.82 - lr: 0.000015 - momentum: 0.000000
2023-10-24 13:35:58,122 epoch 8 - iter 292/738 - loss 0.01241157 - time (sec): 28.65 - samples/sec: 2372.68 - lr: 0.000015 - momentum: 0.000000
2023-10-24 13:36:04,517 epoch 8 - iter 365/738 - loss 0.01179330 - time (sec): 35.04 - samples/sec: 2374.44 - lr: 0.000014 - momentum: 0.000000
2023-10-24 13:36:11,878 epoch 8 - iter 438/738 - loss 0.01120012 - time (sec): 42.40 - samples/sec: 2367.55 - lr: 0.000013 - momentum: 0.000000
2023-10-24 13:36:18,294 epoch 8 - iter 511/738 - loss 0.01084709 - time (sec): 48.82 - samples/sec: 2364.83 - lr: 0.000013 - momentum: 0.000000
2023-10-24 13:36:25,096 epoch 8 - iter 584/738 - loss 0.01068412 - time (sec): 55.62 - samples/sec: 2365.31 - lr: 0.000012 - momentum: 0.000000
2023-10-24 13:36:32,706 epoch 8 - iter 657/738 - loss 0.01037388 - time (sec): 63.23 - samples/sec: 2359.64 - lr: 0.000012 - momentum: 0.000000
2023-10-24 13:36:39,555 epoch 8 - iter 730/738 - loss 0.01018278 - time (sec): 70.08 - samples/sec: 2347.80 - lr: 0.000011 - momentum: 0.000000
2023-10-24 13:36:40,255 ----------------------------------------------------------------------------------------------------
2023-10-24 13:36:40,255 EPOCH 8 done: loss 0.0101 - lr: 0.000011
2023-10-24 13:36:48,796 DEV : loss 0.2113467901945114 - f1-score (micro avg) 0.8322
2023-10-24 13:36:48,817 saving best model
2023-10-24 13:36:49,516 ----------------------------------------------------------------------------------------------------
2023-10-24 13:36:56,498 epoch 9 - iter 73/738 - loss 0.00505270 - time (sec): 6.98 - samples/sec: 2316.96 - lr: 0.000011 - momentum: 0.000000
2023-10-24 13:37:04,786 epoch 9 - iter 146/738 - loss 0.00820157 - time (sec): 15.27 - samples/sec: 2400.03 - lr: 0.000010 - momentum: 0.000000
2023-10-24 13:37:11,208 epoch 9 - iter 219/738 - loss 0.00649651 - time (sec): 21.69 - samples/sec: 2406.43 - lr: 0.000010 - momentum: 0.000000
2023-10-24 13:37:17,526 epoch 9 - iter 292/738 - loss 0.00547378 - time (sec): 28.01 - samples/sec: 2418.99 - lr: 0.000009 - momentum: 0.000000
2023-10-24 13:37:24,116 epoch 9 - iter 365/738 - loss 0.00612415 - time (sec): 34.60 - samples/sec: 2391.03 - lr: 0.000008 - momentum: 0.000000
2023-10-24 13:37:31,210 epoch 9 - iter 438/738 - loss 0.00698846 - time (sec): 41.69 - samples/sec: 2378.01 - lr: 0.000008 - momentum: 0.000000
2023-10-24 13:37:37,809 epoch 9 - iter 511/738 - loss 0.00675961 - time (sec): 48.29 - samples/sec: 2378.54 - lr: 0.000007 - momentum: 0.000000
2023-10-24 13:37:44,996 epoch 9 - iter 584/738 - loss 0.00753027 - time (sec): 55.48 - samples/sec: 2370.53 - lr: 0.000007 - momentum: 0.000000
2023-10-24 13:37:52,346 epoch 9 - iter 657/738 - loss 0.00763591 - time (sec): 62.83 - samples/sec: 2367.35 - lr: 0.000006 - momentum: 0.000000
2023-10-24 13:37:59,594 epoch 9 - iter 730/738 - loss 0.00777319 - time (sec): 70.08 - samples/sec: 2353.84 - lr: 0.000006 - momentum: 0.000000
2023-10-24 13:38:00,322 ----------------------------------------------------------------------------------------------------
2023-10-24 13:38:00,323 EPOCH 9 done: loss 0.0078 - lr: 0.000006
2023-10-24 13:38:08,878 DEV : loss 0.21783244609832764 - f1-score (micro avg) 0.8352
2023-10-24 13:38:08,900 saving best model
2023-10-24 13:38:09,600 ----------------------------------------------------------------------------------------------------
2023-10-24 13:38:16,920 epoch 10 - iter 73/738 - loss 0.00253360 - time (sec): 7.32 - samples/sec: 2295.08 - lr: 0.000005 - momentum: 0.000000
2023-10-24 13:38:23,358 epoch 10 - iter 146/738 - loss 0.00249723 - time (sec): 13.76 - samples/sec: 2342.58 - lr: 0.000004 - momentum: 0.000000
2023-10-24 13:38:30,009 epoch 10 - iter 219/738 - loss 0.00177836 - time (sec): 20.41 - samples/sec: 2356.11 - lr: 0.000004 - momentum: 0.000000
2023-10-24 13:38:36,780 epoch 10 - iter 292/738 - loss 0.00257288 - time (sec): 27.18 - samples/sec: 2357.09 - lr: 0.000003 - momentum: 0.000000
2023-10-24 13:38:43,614 epoch 10 - iter 365/738 - loss 0.00349932 - time (sec): 34.01 - samples/sec: 2339.08 - lr: 0.000003 - momentum: 0.000000
2023-10-24 13:38:50,533 epoch 10 - iter 438/738 - loss 0.00352785 - time (sec): 40.93 - samples/sec: 2317.89 - lr: 0.000002 - momentum: 0.000000
2023-10-24 13:38:57,255 epoch 10 - iter 511/738 - loss 0.00323887 - time (sec): 47.65 - samples/sec: 2327.57 - lr: 0.000002 - momentum: 0.000000
2023-10-24 13:39:03,819 epoch 10 - iter 584/738 - loss 0.00431697 - time (sec): 54.22 - samples/sec: 2329.50 - lr: 0.000001 - momentum: 0.000000
2023-10-24 13:39:11,019 epoch 10 - iter 657/738 - loss 0.00445023 - time (sec): 61.42 - samples/sec: 2355.78 - lr: 0.000001 - momentum: 0.000000
2023-10-24 13:39:19,476 epoch 10 - iter 730/738 - loss 0.00508714 - time (sec): 69.87 - samples/sec: 2356.15 - lr: 0.000000 - momentum: 0.000000
2023-10-24 13:39:20,153 ----------------------------------------------------------------------------------------------------
2023-10-24 13:39:20,153 EPOCH 10 done: loss 0.0050 - lr: 0.000000
2023-10-24 13:39:28,707 DEV : loss 0.22154250741004944 - f1-score (micro avg) 0.8321
2023-10-24 13:39:29,293 ----------------------------------------------------------------------------------------------------
2023-10-24 13:39:29,294 Loading model from best epoch ...
2023-10-24 13:39:31,161 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-time, B-time, E-time, I-time, S-prod, B-prod, E-prod, I-prod
2023-10-24 13:39:37,474
Results:
- F-score (micro) 0.7844
- F-score (macro) 0.6892
- Accuracy 0.6719
By class:
precision recall f1-score support
loc 0.8373 0.8695 0.8531 858
pers 0.7276 0.7858 0.7556 537
org 0.5926 0.6061 0.5993 132
time 0.5231 0.6296 0.5714 54
prod 0.7400 0.6066 0.6667 61
micro avg 0.7664 0.8033 0.7844 1642
macro avg 0.6841 0.6995 0.6892 1642
weighted avg 0.7678 0.8033 0.7846 1642
2023-10-24 13:39:37,474 ----------------------------------------------------------------------------------------------------
|