File size: 37,026 Bytes
9c24de4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
2023-10-24 13:26:12,906 ----------------------------------------------------------------------------------------------------
2023-10-24 13:26:12,907 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(64001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (1): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (2): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (3): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (4): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (5): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (6): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (7): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (8): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (9): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (10): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (11): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=768, out_features=768, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=21, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-24 13:26:12,907 ----------------------------------------------------------------------------------------------------
2023-10-24 13:26:12,907 MultiCorpus: 5901 train + 1287 dev + 1505 test sentences
 - NER_HIPE_2022 Corpus: 5901 train + 1287 dev + 1505 test sentences - /home/ubuntu/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/fr/with_doc_seperator
2023-10-24 13:26:12,907 ----------------------------------------------------------------------------------------------------
2023-10-24 13:26:12,907 Train:  5901 sentences
2023-10-24 13:26:12,907         (train_with_dev=False, train_with_test=False)
2023-10-24 13:26:12,907 ----------------------------------------------------------------------------------------------------
2023-10-24 13:26:12,907 Training Params:
2023-10-24 13:26:12,907  - learning_rate: "5e-05" 
2023-10-24 13:26:12,907  - mini_batch_size: "8"
2023-10-24 13:26:12,907  - max_epochs: "10"
2023-10-24 13:26:12,907  - shuffle: "True"
2023-10-24 13:26:12,907 ----------------------------------------------------------------------------------------------------
2023-10-24 13:26:12,907 Plugins:
2023-10-24 13:26:12,907  - TensorboardLogger
2023-10-24 13:26:12,907  - LinearScheduler | warmup_fraction: '0.1'
2023-10-24 13:26:12,907 ----------------------------------------------------------------------------------------------------
2023-10-24 13:26:12,907 Final evaluation on model from best epoch (best-model.pt)
2023-10-24 13:26:12,907  - metric: "('micro avg', 'f1-score')"
2023-10-24 13:26:12,907 ----------------------------------------------------------------------------------------------------
2023-10-24 13:26:12,907 Computation:
2023-10-24 13:26:12,907  - compute on device: cuda:0
2023-10-24 13:26:12,907  - embedding storage: none
2023-10-24 13:26:12,907 ----------------------------------------------------------------------------------------------------
2023-10-24 13:26:12,908 Model training base path: "hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5"
2023-10-24 13:26:12,908 ----------------------------------------------------------------------------------------------------
2023-10-24 13:26:12,908 ----------------------------------------------------------------------------------------------------
2023-10-24 13:26:12,908 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-24 13:26:19,585 epoch 1 - iter 73/738 - loss 1.87843397 - time (sec): 6.68 - samples/sec: 2355.81 - lr: 0.000005 - momentum: 0.000000
2023-10-24 13:26:26,648 epoch 1 - iter 146/738 - loss 1.23669691 - time (sec): 13.74 - samples/sec: 2287.20 - lr: 0.000010 - momentum: 0.000000
2023-10-24 13:26:33,333 epoch 1 - iter 219/738 - loss 0.95046007 - time (sec): 20.42 - samples/sec: 2293.57 - lr: 0.000015 - momentum: 0.000000
2023-10-24 13:26:39,552 epoch 1 - iter 292/738 - loss 0.78741929 - time (sec): 26.64 - samples/sec: 2325.13 - lr: 0.000020 - momentum: 0.000000
2023-10-24 13:26:47,678 epoch 1 - iter 365/738 - loss 0.66312271 - time (sec): 34.77 - samples/sec: 2330.02 - lr: 0.000025 - momentum: 0.000000
2023-10-24 13:26:54,437 epoch 1 - iter 438/738 - loss 0.58329828 - time (sec): 41.53 - samples/sec: 2361.83 - lr: 0.000030 - momentum: 0.000000
2023-10-24 13:27:01,634 epoch 1 - iter 511/738 - loss 0.52013512 - time (sec): 48.73 - samples/sec: 2367.86 - lr: 0.000035 - momentum: 0.000000
2023-10-24 13:27:08,503 epoch 1 - iter 584/738 - loss 0.47832610 - time (sec): 55.59 - samples/sec: 2361.41 - lr: 0.000039 - momentum: 0.000000
2023-10-24 13:27:15,950 epoch 1 - iter 657/738 - loss 0.44013722 - time (sec): 63.04 - samples/sec: 2355.32 - lr: 0.000044 - momentum: 0.000000
2023-10-24 13:27:22,402 epoch 1 - iter 730/738 - loss 0.41193232 - time (sec): 69.49 - samples/sec: 2358.74 - lr: 0.000049 - momentum: 0.000000
2023-10-24 13:27:23,423 ----------------------------------------------------------------------------------------------------
2023-10-24 13:27:23,423 EPOCH 1 done: loss 0.4080 - lr: 0.000049
2023-10-24 13:27:29,681 DEV : loss 0.10953915119171143 - f1-score (micro avg)  0.6996
2023-10-24 13:27:29,702 saving best model
2023-10-24 13:27:30,252 ----------------------------------------------------------------------------------------------------
2023-10-24 13:27:36,790 epoch 2 - iter 73/738 - loss 0.12856043 - time (sec): 6.54 - samples/sec: 2401.39 - lr: 0.000049 - momentum: 0.000000
2023-10-24 13:27:43,668 epoch 2 - iter 146/738 - loss 0.12842399 - time (sec): 13.42 - samples/sec: 2351.92 - lr: 0.000049 - momentum: 0.000000
2023-10-24 13:27:50,487 epoch 2 - iter 219/738 - loss 0.12815504 - time (sec): 20.23 - samples/sec: 2361.80 - lr: 0.000048 - momentum: 0.000000
2023-10-24 13:27:57,248 epoch 2 - iter 292/738 - loss 0.12409229 - time (sec): 27.00 - samples/sec: 2339.92 - lr: 0.000048 - momentum: 0.000000
2023-10-24 13:28:03,997 epoch 2 - iter 365/738 - loss 0.12199118 - time (sec): 33.74 - samples/sec: 2347.12 - lr: 0.000047 - momentum: 0.000000
2023-10-24 13:28:10,826 epoch 2 - iter 438/738 - loss 0.11973631 - time (sec): 40.57 - samples/sec: 2342.24 - lr: 0.000047 - momentum: 0.000000
2023-10-24 13:28:18,157 epoch 2 - iter 511/738 - loss 0.12078151 - time (sec): 47.90 - samples/sec: 2360.10 - lr: 0.000046 - momentum: 0.000000
2023-10-24 13:28:25,872 epoch 2 - iter 584/738 - loss 0.11713377 - time (sec): 55.62 - samples/sec: 2358.47 - lr: 0.000046 - momentum: 0.000000
2023-10-24 13:28:32,609 epoch 2 - iter 657/738 - loss 0.11656313 - time (sec): 62.36 - samples/sec: 2357.16 - lr: 0.000045 - momentum: 0.000000
2023-10-24 13:28:40,269 epoch 2 - iter 730/738 - loss 0.11463726 - time (sec): 70.02 - samples/sec: 2350.59 - lr: 0.000045 - momentum: 0.000000
2023-10-24 13:28:41,017 ----------------------------------------------------------------------------------------------------
2023-10-24 13:28:41,017 EPOCH 2 done: loss 0.1145 - lr: 0.000045
2023-10-24 13:28:49,488 DEV : loss 0.11087270081043243 - f1-score (micro avg)  0.7895
2023-10-24 13:28:49,509 saving best model
2023-10-24 13:28:50,218 ----------------------------------------------------------------------------------------------------
2023-10-24 13:28:56,322 epoch 3 - iter 73/738 - loss 0.05848905 - time (sec): 6.10 - samples/sec: 2528.26 - lr: 0.000044 - momentum: 0.000000
2023-10-24 13:29:03,544 epoch 3 - iter 146/738 - loss 0.06303135 - time (sec): 13.33 - samples/sec: 2409.83 - lr: 0.000043 - momentum: 0.000000
2023-10-24 13:29:11,131 epoch 3 - iter 219/738 - loss 0.06634706 - time (sec): 20.91 - samples/sec: 2351.64 - lr: 0.000043 - momentum: 0.000000
2023-10-24 13:29:18,504 epoch 3 - iter 292/738 - loss 0.06169395 - time (sec): 28.28 - samples/sec: 2350.13 - lr: 0.000042 - momentum: 0.000000
2023-10-24 13:29:25,686 epoch 3 - iter 365/738 - loss 0.06197945 - time (sec): 35.47 - samples/sec: 2337.71 - lr: 0.000042 - momentum: 0.000000
2023-10-24 13:29:32,841 epoch 3 - iter 438/738 - loss 0.06398829 - time (sec): 42.62 - samples/sec: 2338.06 - lr: 0.000041 - momentum: 0.000000
2023-10-24 13:29:39,705 epoch 3 - iter 511/738 - loss 0.06397235 - time (sec): 49.49 - samples/sec: 2340.00 - lr: 0.000041 - momentum: 0.000000
2023-10-24 13:29:46,062 epoch 3 - iter 584/738 - loss 0.06498214 - time (sec): 55.84 - samples/sec: 2350.07 - lr: 0.000040 - momentum: 0.000000
2023-10-24 13:29:52,694 epoch 3 - iter 657/738 - loss 0.06519288 - time (sec): 62.48 - samples/sec: 2347.72 - lr: 0.000040 - momentum: 0.000000
2023-10-24 13:29:59,865 epoch 3 - iter 730/738 - loss 0.06817157 - time (sec): 69.65 - samples/sec: 2355.77 - lr: 0.000039 - momentum: 0.000000
2023-10-24 13:30:01,021 ----------------------------------------------------------------------------------------------------
2023-10-24 13:30:01,021 EPOCH 3 done: loss 0.0681 - lr: 0.000039
2023-10-24 13:30:09,509 DEV : loss 0.11597760021686554 - f1-score (micro avg)  0.8001
2023-10-24 13:30:09,530 saving best model
2023-10-24 13:30:10,242 ----------------------------------------------------------------------------------------------------
2023-10-24 13:30:16,724 epoch 4 - iter 73/738 - loss 0.04098436 - time (sec): 6.48 - samples/sec: 2324.44 - lr: 0.000038 - momentum: 0.000000
2023-10-24 13:30:23,121 epoch 4 - iter 146/738 - loss 0.04478723 - time (sec): 12.88 - samples/sec: 2354.37 - lr: 0.000038 - momentum: 0.000000
2023-10-24 13:30:29,752 epoch 4 - iter 219/738 - loss 0.04880260 - time (sec): 19.51 - samples/sec: 2348.94 - lr: 0.000037 - momentum: 0.000000
2023-10-24 13:30:36,153 epoch 4 - iter 292/738 - loss 0.04742649 - time (sec): 25.91 - samples/sec: 2352.20 - lr: 0.000037 - momentum: 0.000000
2023-10-24 13:30:43,540 epoch 4 - iter 365/738 - loss 0.05043582 - time (sec): 33.30 - samples/sec: 2364.88 - lr: 0.000036 - momentum: 0.000000
2023-10-24 13:30:51,397 epoch 4 - iter 438/738 - loss 0.05054486 - time (sec): 41.15 - samples/sec: 2350.36 - lr: 0.000036 - momentum: 0.000000
2023-10-24 13:30:59,099 epoch 4 - iter 511/738 - loss 0.04763501 - time (sec): 48.86 - samples/sec: 2349.85 - lr: 0.000035 - momentum: 0.000000
2023-10-24 13:31:06,696 epoch 4 - iter 584/738 - loss 0.04763938 - time (sec): 56.45 - samples/sec: 2357.22 - lr: 0.000035 - momentum: 0.000000
2023-10-24 13:31:13,947 epoch 4 - iter 657/738 - loss 0.04791332 - time (sec): 63.70 - samples/sec: 2351.16 - lr: 0.000034 - momentum: 0.000000
2023-10-24 13:31:20,299 epoch 4 - iter 730/738 - loss 0.04703381 - time (sec): 70.06 - samples/sec: 2353.03 - lr: 0.000033 - momentum: 0.000000
2023-10-24 13:31:20,938 ----------------------------------------------------------------------------------------------------
2023-10-24 13:31:20,938 EPOCH 4 done: loss 0.0472 - lr: 0.000033
2023-10-24 13:31:29,454 DEV : loss 0.1576639711856842 - f1-score (micro avg)  0.8054
2023-10-24 13:31:29,475 saving best model
2023-10-24 13:31:30,138 ----------------------------------------------------------------------------------------------------
2023-10-24 13:31:36,865 epoch 5 - iter 73/738 - loss 0.03814569 - time (sec): 6.73 - samples/sec: 2415.22 - lr: 0.000033 - momentum: 0.000000
2023-10-24 13:31:44,135 epoch 5 - iter 146/738 - loss 0.03447645 - time (sec): 14.00 - samples/sec: 2422.92 - lr: 0.000032 - momentum: 0.000000
2023-10-24 13:31:51,116 epoch 5 - iter 219/738 - loss 0.03261789 - time (sec): 20.98 - samples/sec: 2354.95 - lr: 0.000032 - momentum: 0.000000
2023-10-24 13:31:57,985 epoch 5 - iter 292/738 - loss 0.03744440 - time (sec): 27.85 - samples/sec: 2360.46 - lr: 0.000031 - momentum: 0.000000
2023-10-24 13:32:05,585 epoch 5 - iter 365/738 - loss 0.03675531 - time (sec): 35.45 - samples/sec: 2368.90 - lr: 0.000031 - momentum: 0.000000
2023-10-24 13:32:12,307 epoch 5 - iter 438/738 - loss 0.03564464 - time (sec): 42.17 - samples/sec: 2369.51 - lr: 0.000030 - momentum: 0.000000
2023-10-24 13:32:18,805 epoch 5 - iter 511/738 - loss 0.03487785 - time (sec): 48.67 - samples/sec: 2360.38 - lr: 0.000030 - momentum: 0.000000
2023-10-24 13:32:26,703 epoch 5 - iter 584/738 - loss 0.03512836 - time (sec): 56.56 - samples/sec: 2340.57 - lr: 0.000029 - momentum: 0.000000
2023-10-24 13:32:33,278 epoch 5 - iter 657/738 - loss 0.03480734 - time (sec): 63.14 - samples/sec: 2353.68 - lr: 0.000028 - momentum: 0.000000
2023-10-24 13:32:40,558 epoch 5 - iter 730/738 - loss 0.03464501 - time (sec): 70.42 - samples/sec: 2341.86 - lr: 0.000028 - momentum: 0.000000
2023-10-24 13:32:41,297 ----------------------------------------------------------------------------------------------------
2023-10-24 13:32:41,298 EPOCH 5 done: loss 0.0346 - lr: 0.000028
2023-10-24 13:32:49,820 DEV : loss 0.17847341299057007 - f1-score (micro avg)  0.8278
2023-10-24 13:32:49,842 saving best model
2023-10-24 13:32:50,561 ----------------------------------------------------------------------------------------------------
2023-10-24 13:32:57,858 epoch 6 - iter 73/738 - loss 0.01898276 - time (sec): 7.30 - samples/sec: 2357.37 - lr: 0.000027 - momentum: 0.000000
2023-10-24 13:33:03,897 epoch 6 - iter 146/738 - loss 0.02062329 - time (sec): 13.34 - samples/sec: 2388.72 - lr: 0.000027 - momentum: 0.000000
2023-10-24 13:33:11,244 epoch 6 - iter 219/738 - loss 0.01861392 - time (sec): 20.68 - samples/sec: 2330.38 - lr: 0.000026 - momentum: 0.000000
2023-10-24 13:33:19,200 epoch 6 - iter 292/738 - loss 0.02328625 - time (sec): 28.64 - samples/sec: 2365.49 - lr: 0.000026 - momentum: 0.000000
2023-10-24 13:33:25,704 epoch 6 - iter 365/738 - loss 0.02353453 - time (sec): 35.14 - samples/sec: 2361.28 - lr: 0.000025 - momentum: 0.000000
2023-10-24 13:33:32,111 epoch 6 - iter 438/738 - loss 0.02268378 - time (sec): 41.55 - samples/sec: 2356.15 - lr: 0.000025 - momentum: 0.000000
2023-10-24 13:33:38,223 epoch 6 - iter 511/738 - loss 0.02475660 - time (sec): 47.66 - samples/sec: 2350.05 - lr: 0.000024 - momentum: 0.000000
2023-10-24 13:33:45,381 epoch 6 - iter 584/738 - loss 0.02481615 - time (sec): 54.82 - samples/sec: 2350.71 - lr: 0.000023 - momentum: 0.000000
2023-10-24 13:33:53,219 epoch 6 - iter 657/738 - loss 0.02437100 - time (sec): 62.66 - samples/sec: 2352.59 - lr: 0.000023 - momentum: 0.000000
2023-10-24 13:34:00,631 epoch 6 - iter 730/738 - loss 0.02404331 - time (sec): 70.07 - samples/sec: 2350.44 - lr: 0.000022 - momentum: 0.000000
2023-10-24 13:34:01,283 ----------------------------------------------------------------------------------------------------
2023-10-24 13:34:01,284 EPOCH 6 done: loss 0.0239 - lr: 0.000022
2023-10-24 13:34:09,822 DEV : loss 0.19103363156318665 - f1-score (micro avg)  0.8177
2023-10-24 13:34:09,844 ----------------------------------------------------------------------------------------------------
2023-10-24 13:34:17,437 epoch 7 - iter 73/738 - loss 0.01986646 - time (sec): 7.59 - samples/sec: 2506.14 - lr: 0.000022 - momentum: 0.000000
2023-10-24 13:34:24,923 epoch 7 - iter 146/738 - loss 0.01706995 - time (sec): 15.08 - samples/sec: 2406.26 - lr: 0.000021 - momentum: 0.000000
2023-10-24 13:34:31,695 epoch 7 - iter 219/738 - loss 0.01522152 - time (sec): 21.85 - samples/sec: 2366.54 - lr: 0.000021 - momentum: 0.000000
2023-10-24 13:34:38,753 epoch 7 - iter 292/738 - loss 0.01709441 - time (sec): 28.91 - samples/sec: 2354.77 - lr: 0.000020 - momentum: 0.000000
2023-10-24 13:34:45,228 epoch 7 - iter 365/738 - loss 0.01655309 - time (sec): 35.38 - samples/sec: 2363.51 - lr: 0.000020 - momentum: 0.000000
2023-10-24 13:34:51,955 epoch 7 - iter 438/738 - loss 0.01608348 - time (sec): 42.11 - samples/sec: 2356.84 - lr: 0.000019 - momentum: 0.000000
2023-10-24 13:34:58,690 epoch 7 - iter 511/738 - loss 0.01628481 - time (sec): 48.84 - samples/sec: 2347.12 - lr: 0.000018 - momentum: 0.000000
2023-10-24 13:35:04,990 epoch 7 - iter 584/738 - loss 0.01670341 - time (sec): 55.15 - samples/sec: 2345.70 - lr: 0.000018 - momentum: 0.000000
2023-10-24 13:35:13,111 epoch 7 - iter 657/738 - loss 0.01686839 - time (sec): 63.27 - samples/sec: 2348.50 - lr: 0.000017 - momentum: 0.000000
2023-10-24 13:35:20,233 epoch 7 - iter 730/738 - loss 0.01751030 - time (sec): 70.39 - samples/sec: 2338.05 - lr: 0.000017 - momentum: 0.000000
2023-10-24 13:35:20,903 ----------------------------------------------------------------------------------------------------
2023-10-24 13:35:20,903 EPOCH 7 done: loss 0.0175 - lr: 0.000017
2023-10-24 13:35:29,453 DEV : loss 0.19701939821243286 - f1-score (micro avg)  0.8147
2023-10-24 13:35:29,474 ----------------------------------------------------------------------------------------------------
2023-10-24 13:35:36,177 epoch 8 - iter 73/738 - loss 0.00499695 - time (sec): 6.70 - samples/sec: 2239.76 - lr: 0.000016 - momentum: 0.000000
2023-10-24 13:35:43,356 epoch 8 - iter 146/738 - loss 0.00716743 - time (sec): 13.88 - samples/sec: 2271.84 - lr: 0.000016 - momentum: 0.000000
2023-10-24 13:35:50,568 epoch 8 - iter 219/738 - loss 0.00825664 - time (sec): 21.09 - samples/sec: 2323.82 - lr: 0.000015 - momentum: 0.000000
2023-10-24 13:35:58,122 epoch 8 - iter 292/738 - loss 0.01241157 - time (sec): 28.65 - samples/sec: 2372.68 - lr: 0.000015 - momentum: 0.000000
2023-10-24 13:36:04,517 epoch 8 - iter 365/738 - loss 0.01179330 - time (sec): 35.04 - samples/sec: 2374.44 - lr: 0.000014 - momentum: 0.000000
2023-10-24 13:36:11,878 epoch 8 - iter 438/738 - loss 0.01120012 - time (sec): 42.40 - samples/sec: 2367.55 - lr: 0.000013 - momentum: 0.000000
2023-10-24 13:36:18,294 epoch 8 - iter 511/738 - loss 0.01084709 - time (sec): 48.82 - samples/sec: 2364.83 - lr: 0.000013 - momentum: 0.000000
2023-10-24 13:36:25,096 epoch 8 - iter 584/738 - loss 0.01068412 - time (sec): 55.62 - samples/sec: 2365.31 - lr: 0.000012 - momentum: 0.000000
2023-10-24 13:36:32,706 epoch 8 - iter 657/738 - loss 0.01037388 - time (sec): 63.23 - samples/sec: 2359.64 - lr: 0.000012 - momentum: 0.000000
2023-10-24 13:36:39,555 epoch 8 - iter 730/738 - loss 0.01018278 - time (sec): 70.08 - samples/sec: 2347.80 - lr: 0.000011 - momentum: 0.000000
2023-10-24 13:36:40,255 ----------------------------------------------------------------------------------------------------
2023-10-24 13:36:40,255 EPOCH 8 done: loss 0.0101 - lr: 0.000011
2023-10-24 13:36:48,796 DEV : loss 0.2113467901945114 - f1-score (micro avg)  0.8322
2023-10-24 13:36:48,817 saving best model
2023-10-24 13:36:49,516 ----------------------------------------------------------------------------------------------------
2023-10-24 13:36:56,498 epoch 9 - iter 73/738 - loss 0.00505270 - time (sec): 6.98 - samples/sec: 2316.96 - lr: 0.000011 - momentum: 0.000000
2023-10-24 13:37:04,786 epoch 9 - iter 146/738 - loss 0.00820157 - time (sec): 15.27 - samples/sec: 2400.03 - lr: 0.000010 - momentum: 0.000000
2023-10-24 13:37:11,208 epoch 9 - iter 219/738 - loss 0.00649651 - time (sec): 21.69 - samples/sec: 2406.43 - lr: 0.000010 - momentum: 0.000000
2023-10-24 13:37:17,526 epoch 9 - iter 292/738 - loss 0.00547378 - time (sec): 28.01 - samples/sec: 2418.99 - lr: 0.000009 - momentum: 0.000000
2023-10-24 13:37:24,116 epoch 9 - iter 365/738 - loss 0.00612415 - time (sec): 34.60 - samples/sec: 2391.03 - lr: 0.000008 - momentum: 0.000000
2023-10-24 13:37:31,210 epoch 9 - iter 438/738 - loss 0.00698846 - time (sec): 41.69 - samples/sec: 2378.01 - lr: 0.000008 - momentum: 0.000000
2023-10-24 13:37:37,809 epoch 9 - iter 511/738 - loss 0.00675961 - time (sec): 48.29 - samples/sec: 2378.54 - lr: 0.000007 - momentum: 0.000000
2023-10-24 13:37:44,996 epoch 9 - iter 584/738 - loss 0.00753027 - time (sec): 55.48 - samples/sec: 2370.53 - lr: 0.000007 - momentum: 0.000000
2023-10-24 13:37:52,346 epoch 9 - iter 657/738 - loss 0.00763591 - time (sec): 62.83 - samples/sec: 2367.35 - lr: 0.000006 - momentum: 0.000000
2023-10-24 13:37:59,594 epoch 9 - iter 730/738 - loss 0.00777319 - time (sec): 70.08 - samples/sec: 2353.84 - lr: 0.000006 - momentum: 0.000000
2023-10-24 13:38:00,322 ----------------------------------------------------------------------------------------------------
2023-10-24 13:38:00,323 EPOCH 9 done: loss 0.0078 - lr: 0.000006
2023-10-24 13:38:08,878 DEV : loss 0.21783244609832764 - f1-score (micro avg)  0.8352
2023-10-24 13:38:08,900 saving best model
2023-10-24 13:38:09,600 ----------------------------------------------------------------------------------------------------
2023-10-24 13:38:16,920 epoch 10 - iter 73/738 - loss 0.00253360 - time (sec): 7.32 - samples/sec: 2295.08 - lr: 0.000005 - momentum: 0.000000
2023-10-24 13:38:23,358 epoch 10 - iter 146/738 - loss 0.00249723 - time (sec): 13.76 - samples/sec: 2342.58 - lr: 0.000004 - momentum: 0.000000
2023-10-24 13:38:30,009 epoch 10 - iter 219/738 - loss 0.00177836 - time (sec): 20.41 - samples/sec: 2356.11 - lr: 0.000004 - momentum: 0.000000
2023-10-24 13:38:36,780 epoch 10 - iter 292/738 - loss 0.00257288 - time (sec): 27.18 - samples/sec: 2357.09 - lr: 0.000003 - momentum: 0.000000
2023-10-24 13:38:43,614 epoch 10 - iter 365/738 - loss 0.00349932 - time (sec): 34.01 - samples/sec: 2339.08 - lr: 0.000003 - momentum: 0.000000
2023-10-24 13:38:50,533 epoch 10 - iter 438/738 - loss 0.00352785 - time (sec): 40.93 - samples/sec: 2317.89 - lr: 0.000002 - momentum: 0.000000
2023-10-24 13:38:57,255 epoch 10 - iter 511/738 - loss 0.00323887 - time (sec): 47.65 - samples/sec: 2327.57 - lr: 0.000002 - momentum: 0.000000
2023-10-24 13:39:03,819 epoch 10 - iter 584/738 - loss 0.00431697 - time (sec): 54.22 - samples/sec: 2329.50 - lr: 0.000001 - momentum: 0.000000
2023-10-24 13:39:11,019 epoch 10 - iter 657/738 - loss 0.00445023 - time (sec): 61.42 - samples/sec: 2355.78 - lr: 0.000001 - momentum: 0.000000
2023-10-24 13:39:19,476 epoch 10 - iter 730/738 - loss 0.00508714 - time (sec): 69.87 - samples/sec: 2356.15 - lr: 0.000000 - momentum: 0.000000
2023-10-24 13:39:20,153 ----------------------------------------------------------------------------------------------------
2023-10-24 13:39:20,153 EPOCH 10 done: loss 0.0050 - lr: 0.000000
2023-10-24 13:39:28,707 DEV : loss 0.22154250741004944 - f1-score (micro avg)  0.8321
2023-10-24 13:39:29,293 ----------------------------------------------------------------------------------------------------
2023-10-24 13:39:29,294 Loading model from best epoch ...
2023-10-24 13:39:31,161 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-time, B-time, E-time, I-time, S-prod, B-prod, E-prod, I-prod
2023-10-24 13:39:37,474 
Results:
- F-score (micro) 0.7844
- F-score (macro) 0.6892
- Accuracy 0.6719

By class:
              precision    recall  f1-score   support

         loc     0.8373    0.8695    0.8531       858
        pers     0.7276    0.7858    0.7556       537
         org     0.5926    0.6061    0.5993       132
        time     0.5231    0.6296    0.5714        54
        prod     0.7400    0.6066    0.6667        61

   micro avg     0.7664    0.8033    0.7844      1642
   macro avg     0.6841    0.6995    0.6892      1642
weighted avg     0.7678    0.8033    0.7846      1642

2023-10-24 13:39:37,474 ----------------------------------------------------------------------------------------------------