|
2023-10-19 01:10:59,040 ---------------------------------------------------------------------------------------------------- |
|
2023-10-19 01:10:59,040 Model: "SequenceTagger( |
|
(embeddings): TransformerWordEmbeddings( |
|
(model): BertModel( |
|
(embeddings): BertEmbeddings( |
|
(word_embeddings): Embedding(32001, 128) |
|
(position_embeddings): Embedding(512, 128) |
|
(token_type_embeddings): Embedding(2, 128) |
|
(LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(encoder): BertEncoder( |
|
(layer): ModuleList( |
|
(0-1): 2 x BertLayer( |
|
(attention): BertAttention( |
|
(self): BertSelfAttention( |
|
(query): Linear(in_features=128, out_features=128, bias=True) |
|
(key): Linear(in_features=128, out_features=128, bias=True) |
|
(value): Linear(in_features=128, out_features=128, bias=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(output): BertSelfOutput( |
|
(dense): Linear(in_features=128, out_features=128, bias=True) |
|
(LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
(intermediate): BertIntermediate( |
|
(dense): Linear(in_features=128, out_features=512, bias=True) |
|
(intermediate_act_fn): GELUActivation() |
|
) |
|
(output): BertOutput( |
|
(dense): Linear(in_features=512, out_features=128, bias=True) |
|
(LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
) |
|
) |
|
(pooler): BertPooler( |
|
(dense): Linear(in_features=128, out_features=128, bias=True) |
|
(activation): Tanh() |
|
) |
|
) |
|
) |
|
(locked_dropout): LockedDropout(p=0.5) |
|
(linear): Linear(in_features=128, out_features=13, bias=True) |
|
(loss_function): CrossEntropyLoss() |
|
)" |
|
2023-10-19 01:10:59,040 ---------------------------------------------------------------------------------------------------- |
|
2023-10-19 01:10:59,040 MultiCorpus: 14465 train + 1392 dev + 2432 test sentences |
|
- NER_HIPE_2022 Corpus: 14465 train + 1392 dev + 2432 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/letemps/fr/with_doc_seperator |
|
2023-10-19 01:10:59,040 ---------------------------------------------------------------------------------------------------- |
|
2023-10-19 01:10:59,040 Train: 14465 sentences |
|
2023-10-19 01:10:59,040 (train_with_dev=False, train_with_test=False) |
|
2023-10-19 01:10:59,040 ---------------------------------------------------------------------------------------------------- |
|
2023-10-19 01:10:59,040 Training Params: |
|
2023-10-19 01:10:59,040 - learning_rate: "3e-05" |
|
2023-10-19 01:10:59,040 - mini_batch_size: "4" |
|
2023-10-19 01:10:59,040 - max_epochs: "10" |
|
2023-10-19 01:10:59,040 - shuffle: "True" |
|
2023-10-19 01:10:59,040 ---------------------------------------------------------------------------------------------------- |
|
2023-10-19 01:10:59,040 Plugins: |
|
2023-10-19 01:10:59,040 - TensorboardLogger |
|
2023-10-19 01:10:59,040 - LinearScheduler | warmup_fraction: '0.1' |
|
2023-10-19 01:10:59,040 ---------------------------------------------------------------------------------------------------- |
|
2023-10-19 01:10:59,040 Final evaluation on model from best epoch (best-model.pt) |
|
2023-10-19 01:10:59,040 - metric: "('micro avg', 'f1-score')" |
|
2023-10-19 01:10:59,041 ---------------------------------------------------------------------------------------------------- |
|
2023-10-19 01:10:59,041 Computation: |
|
2023-10-19 01:10:59,041 - compute on device: cuda:0 |
|
2023-10-19 01:10:59,041 - embedding storage: none |
|
2023-10-19 01:10:59,041 ---------------------------------------------------------------------------------------------------- |
|
2023-10-19 01:10:59,041 Model training base path: "hmbench-letemps/fr-dbmdz/bert-tiny-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4" |
|
2023-10-19 01:10:59,041 ---------------------------------------------------------------------------------------------------- |
|
2023-10-19 01:10:59,041 ---------------------------------------------------------------------------------------------------- |
|
2023-10-19 01:10:59,041 Logging anything other than scalars to TensorBoard is currently not supported. |
|
2023-10-19 01:11:04,907 epoch 1 - iter 361/3617 - loss 3.12252186 - time (sec): 5.87 - samples/sec: 6145.92 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-19 01:11:10,541 epoch 1 - iter 722/3617 - loss 2.41293036 - time (sec): 11.50 - samples/sec: 6537.22 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-19 01:11:16,281 epoch 1 - iter 1083/3617 - loss 1.79547173 - time (sec): 17.24 - samples/sec: 6533.93 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-19 01:11:21,954 epoch 1 - iter 1444/3617 - loss 1.44599180 - time (sec): 22.91 - samples/sec: 6519.84 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-19 01:11:27,623 epoch 1 - iter 1805/3617 - loss 1.22012401 - time (sec): 28.58 - samples/sec: 6522.30 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-19 01:11:33,316 epoch 1 - iter 2166/3617 - loss 1.06655197 - time (sec): 34.27 - samples/sec: 6522.49 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-19 01:11:39,043 epoch 1 - iter 2527/3617 - loss 0.95272625 - time (sec): 40.00 - samples/sec: 6529.96 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-19 01:11:44,824 epoch 1 - iter 2888/3617 - loss 0.85861658 - time (sec): 45.78 - samples/sec: 6579.78 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-19 01:11:50,477 epoch 1 - iter 3249/3617 - loss 0.78754238 - time (sec): 51.44 - samples/sec: 6619.51 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-19 01:11:56,201 epoch 1 - iter 3610/3617 - loss 0.73000898 - time (sec): 57.16 - samples/sec: 6635.44 - lr: 0.000030 - momentum: 0.000000 |
|
2023-10-19 01:11:56,311 ---------------------------------------------------------------------------------------------------- |
|
2023-10-19 01:11:56,311 EPOCH 1 done: loss 0.7293 - lr: 0.000030 |
|
2023-10-19 01:11:58,584 DEV : loss 0.1803603321313858 - f1-score (micro avg) 0.1925 |
|
2023-10-19 01:11:58,611 saving best model |
|
2023-10-19 01:11:58,640 ---------------------------------------------------------------------------------------------------- |
|
2023-10-19 01:12:04,265 epoch 2 - iter 361/3617 - loss 0.20098825 - time (sec): 5.62 - samples/sec: 6528.17 - lr: 0.000030 - momentum: 0.000000 |
|
2023-10-19 01:12:09,986 epoch 2 - iter 722/3617 - loss 0.20199769 - time (sec): 11.35 - samples/sec: 6570.12 - lr: 0.000029 - momentum: 0.000000 |
|
2023-10-19 01:12:15,686 epoch 2 - iter 1083/3617 - loss 0.19444887 - time (sec): 17.05 - samples/sec: 6553.53 - lr: 0.000029 - momentum: 0.000000 |
|
2023-10-19 01:12:21,265 epoch 2 - iter 1444/3617 - loss 0.19472453 - time (sec): 22.62 - samples/sec: 6574.65 - lr: 0.000029 - momentum: 0.000000 |
|
2023-10-19 01:12:26,799 epoch 2 - iter 1805/3617 - loss 0.19141549 - time (sec): 28.16 - samples/sec: 6668.61 - lr: 0.000028 - momentum: 0.000000 |
|
2023-10-19 01:12:32,506 epoch 2 - iter 2166/3617 - loss 0.18942948 - time (sec): 33.87 - samples/sec: 6651.96 - lr: 0.000028 - momentum: 0.000000 |
|
2023-10-19 01:12:38,393 epoch 2 - iter 2527/3617 - loss 0.19177342 - time (sec): 39.75 - samples/sec: 6633.01 - lr: 0.000028 - momentum: 0.000000 |
|
2023-10-19 01:12:44,107 epoch 2 - iter 2888/3617 - loss 0.18890055 - time (sec): 45.47 - samples/sec: 6637.92 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-19 01:12:49,797 epoch 2 - iter 3249/3617 - loss 0.18726829 - time (sec): 51.16 - samples/sec: 6664.34 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-19 01:12:55,492 epoch 2 - iter 3610/3617 - loss 0.18564262 - time (sec): 56.85 - samples/sec: 6673.24 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-19 01:12:55,588 ---------------------------------------------------------------------------------------------------- |
|
2023-10-19 01:12:55,588 EPOCH 2 done: loss 0.1857 - lr: 0.000027 |
|
2023-10-19 01:12:59,509 DEV : loss 0.17232035100460052 - f1-score (micro avg) 0.3846 |
|
2023-10-19 01:12:59,536 saving best model |
|
2023-10-19 01:12:59,569 ---------------------------------------------------------------------------------------------------- |
|
2023-10-19 01:13:05,350 epoch 3 - iter 361/3617 - loss 0.15068487 - time (sec): 5.78 - samples/sec: 6657.47 - lr: 0.000026 - momentum: 0.000000 |
|
2023-10-19 01:13:11,111 epoch 3 - iter 722/3617 - loss 0.16512105 - time (sec): 11.54 - samples/sec: 6531.24 - lr: 0.000026 - momentum: 0.000000 |
|
2023-10-19 01:13:16,903 epoch 3 - iter 1083/3617 - loss 0.16734512 - time (sec): 17.33 - samples/sec: 6649.78 - lr: 0.000026 - momentum: 0.000000 |
|
2023-10-19 01:13:22,599 epoch 3 - iter 1444/3617 - loss 0.16745629 - time (sec): 23.03 - samples/sec: 6608.73 - lr: 0.000025 - momentum: 0.000000 |
|
2023-10-19 01:13:28,382 epoch 3 - iter 1805/3617 - loss 0.16513383 - time (sec): 28.81 - samples/sec: 6577.01 - lr: 0.000025 - momentum: 0.000000 |
|
2023-10-19 01:13:34,182 epoch 3 - iter 2166/3617 - loss 0.16581818 - time (sec): 34.61 - samples/sec: 6543.84 - lr: 0.000025 - momentum: 0.000000 |
|
2023-10-19 01:13:40,005 epoch 3 - iter 2527/3617 - loss 0.16204270 - time (sec): 40.44 - samples/sec: 6531.56 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-19 01:13:45,508 epoch 3 - iter 2888/3617 - loss 0.15884163 - time (sec): 45.94 - samples/sec: 6591.42 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-19 01:13:51,225 epoch 3 - iter 3249/3617 - loss 0.15690141 - time (sec): 51.66 - samples/sec: 6628.98 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-19 01:13:56,955 epoch 3 - iter 3610/3617 - loss 0.15791128 - time (sec): 57.38 - samples/sec: 6609.03 - lr: 0.000023 - momentum: 0.000000 |
|
2023-10-19 01:13:57,053 ---------------------------------------------------------------------------------------------------- |
|
2023-10-19 01:13:57,053 EPOCH 3 done: loss 0.1578 - lr: 0.000023 |
|
2023-10-19 01:14:00,254 DEV : loss 0.16959495842456818 - f1-score (micro avg) 0.4158 |
|
2023-10-19 01:14:00,282 saving best model |
|
2023-10-19 01:14:00,315 ---------------------------------------------------------------------------------------------------- |
|
2023-10-19 01:14:06,037 epoch 4 - iter 361/3617 - loss 0.13799445 - time (sec): 5.72 - samples/sec: 6598.38 - lr: 0.000023 - momentum: 0.000000 |
|
2023-10-19 01:14:11,790 epoch 4 - iter 722/3617 - loss 0.13722792 - time (sec): 11.47 - samples/sec: 6581.33 - lr: 0.000023 - momentum: 0.000000 |
|
2023-10-19 01:14:17,606 epoch 4 - iter 1083/3617 - loss 0.14251973 - time (sec): 17.29 - samples/sec: 6618.47 - lr: 0.000022 - momentum: 0.000000 |
|
2023-10-19 01:14:23,333 epoch 4 - iter 1444/3617 - loss 0.14215649 - time (sec): 23.02 - samples/sec: 6612.71 - lr: 0.000022 - momentum: 0.000000 |
|
2023-10-19 01:14:29,047 epoch 4 - iter 1805/3617 - loss 0.14527769 - time (sec): 28.73 - samples/sec: 6567.33 - lr: 0.000022 - momentum: 0.000000 |
|
2023-10-19 01:14:34,901 epoch 4 - iter 2166/3617 - loss 0.14771726 - time (sec): 34.58 - samples/sec: 6575.48 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-19 01:14:40,765 epoch 4 - iter 2527/3617 - loss 0.14620802 - time (sec): 40.45 - samples/sec: 6581.63 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-19 01:14:46,464 epoch 4 - iter 2888/3617 - loss 0.14434453 - time (sec): 46.15 - samples/sec: 6577.15 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-19 01:14:52,181 epoch 4 - iter 3249/3617 - loss 0.14432907 - time (sec): 51.86 - samples/sec: 6602.27 - lr: 0.000020 - momentum: 0.000000 |
|
2023-10-19 01:14:57,873 epoch 4 - iter 3610/3617 - loss 0.14625128 - time (sec): 57.56 - samples/sec: 6587.12 - lr: 0.000020 - momentum: 0.000000 |
|
2023-10-19 01:14:57,984 ---------------------------------------------------------------------------------------------------- |
|
2023-10-19 01:14:57,984 EPOCH 4 done: loss 0.1464 - lr: 0.000020 |
|
2023-10-19 01:15:01,868 DEV : loss 0.16661077737808228 - f1-score (micro avg) 0.4483 |
|
2023-10-19 01:15:01,897 saving best model |
|
2023-10-19 01:15:01,929 ---------------------------------------------------------------------------------------------------- |
|
2023-10-19 01:15:07,423 epoch 5 - iter 361/3617 - loss 0.12987237 - time (sec): 5.49 - samples/sec: 6882.43 - lr: 0.000020 - momentum: 0.000000 |
|
2023-10-19 01:15:13,383 epoch 5 - iter 722/3617 - loss 0.12949253 - time (sec): 11.45 - samples/sec: 6532.00 - lr: 0.000019 - momentum: 0.000000 |
|
2023-10-19 01:15:19,029 epoch 5 - iter 1083/3617 - loss 0.13420185 - time (sec): 17.10 - samples/sec: 6506.71 - lr: 0.000019 - momentum: 0.000000 |
|
2023-10-19 01:15:24,691 epoch 5 - iter 1444/3617 - loss 0.13910024 - time (sec): 22.76 - samples/sec: 6542.09 - lr: 0.000019 - momentum: 0.000000 |
|
2023-10-19 01:15:30,487 epoch 5 - iter 1805/3617 - loss 0.13856134 - time (sec): 28.56 - samples/sec: 6558.16 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-19 01:15:36,168 epoch 5 - iter 2166/3617 - loss 0.13530390 - time (sec): 34.24 - samples/sec: 6550.97 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-19 01:15:41,913 epoch 5 - iter 2527/3617 - loss 0.13679379 - time (sec): 39.98 - samples/sec: 6590.17 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-19 01:15:47,672 epoch 5 - iter 2888/3617 - loss 0.13624011 - time (sec): 45.74 - samples/sec: 6604.87 - lr: 0.000017 - momentum: 0.000000 |
|
2023-10-19 01:15:53,434 epoch 5 - iter 3249/3617 - loss 0.13560627 - time (sec): 51.50 - samples/sec: 6616.88 - lr: 0.000017 - momentum: 0.000000 |
|
2023-10-19 01:15:59,190 epoch 5 - iter 3610/3617 - loss 0.13495541 - time (sec): 57.26 - samples/sec: 6624.56 - lr: 0.000017 - momentum: 0.000000 |
|
2023-10-19 01:15:59,302 ---------------------------------------------------------------------------------------------------- |
|
2023-10-19 01:15:59,303 EPOCH 5 done: loss 0.1351 - lr: 0.000017 |
|
2023-10-19 01:16:02,561 DEV : loss 0.1814231425523758 - f1-score (micro avg) 0.4586 |
|
2023-10-19 01:16:02,588 saving best model |
|
2023-10-19 01:16:02,621 ---------------------------------------------------------------------------------------------------- |
|
2023-10-19 01:16:08,251 epoch 6 - iter 361/3617 - loss 0.13714181 - time (sec): 5.63 - samples/sec: 6642.75 - lr: 0.000016 - momentum: 0.000000 |
|
2023-10-19 01:16:13,926 epoch 6 - iter 722/3617 - loss 0.12680325 - time (sec): 11.30 - samples/sec: 6662.60 - lr: 0.000016 - momentum: 0.000000 |
|
2023-10-19 01:16:19,692 epoch 6 - iter 1083/3617 - loss 0.12500890 - time (sec): 17.07 - samples/sec: 6691.92 - lr: 0.000016 - momentum: 0.000000 |
|
2023-10-19 01:16:25,275 epoch 6 - iter 1444/3617 - loss 0.12471214 - time (sec): 22.65 - samples/sec: 6643.42 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-19 01:16:30,912 epoch 6 - iter 1805/3617 - loss 0.12052615 - time (sec): 28.29 - samples/sec: 6579.21 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-19 01:16:36,593 epoch 6 - iter 2166/3617 - loss 0.12279489 - time (sec): 33.97 - samples/sec: 6628.67 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-19 01:16:42,367 epoch 6 - iter 2527/3617 - loss 0.12224267 - time (sec): 39.74 - samples/sec: 6630.65 - lr: 0.000014 - momentum: 0.000000 |
|
2023-10-19 01:16:48,183 epoch 6 - iter 2888/3617 - loss 0.12426780 - time (sec): 45.56 - samples/sec: 6629.71 - lr: 0.000014 - momentum: 0.000000 |
|
2023-10-19 01:16:53,829 epoch 6 - iter 3249/3617 - loss 0.12488997 - time (sec): 51.21 - samples/sec: 6654.26 - lr: 0.000014 - momentum: 0.000000 |
|
2023-10-19 01:16:59,084 epoch 6 - iter 3610/3617 - loss 0.12639819 - time (sec): 56.46 - samples/sec: 6717.91 - lr: 0.000013 - momentum: 0.000000 |
|
2023-10-19 01:16:59,180 ---------------------------------------------------------------------------------------------------- |
|
2023-10-19 01:16:59,181 EPOCH 6 done: loss 0.1264 - lr: 0.000013 |
|
2023-10-19 01:17:02,429 DEV : loss 0.1841202825307846 - f1-score (micro avg) 0.4741 |
|
2023-10-19 01:17:02,456 saving best model |
|
2023-10-19 01:17:02,489 ---------------------------------------------------------------------------------------------------- |
|
2023-10-19 01:17:08,157 epoch 7 - iter 361/3617 - loss 0.12363306 - time (sec): 5.67 - samples/sec: 6708.62 - lr: 0.000013 - momentum: 0.000000 |
|
2023-10-19 01:17:13,867 epoch 7 - iter 722/3617 - loss 0.12287275 - time (sec): 11.38 - samples/sec: 6576.34 - lr: 0.000013 - momentum: 0.000000 |
|
2023-10-19 01:17:19,709 epoch 7 - iter 1083/3617 - loss 0.11963241 - time (sec): 17.22 - samples/sec: 6579.90 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-19 01:17:25,354 epoch 7 - iter 1444/3617 - loss 0.12218097 - time (sec): 22.86 - samples/sec: 6637.46 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-19 01:17:31,082 epoch 7 - iter 1805/3617 - loss 0.12399375 - time (sec): 28.59 - samples/sec: 6639.53 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-19 01:17:36,684 epoch 7 - iter 2166/3617 - loss 0.12278498 - time (sec): 34.19 - samples/sec: 6696.17 - lr: 0.000011 - momentum: 0.000000 |
|
2023-10-19 01:17:43,138 epoch 7 - iter 2527/3617 - loss 0.12015701 - time (sec): 40.65 - samples/sec: 6563.75 - lr: 0.000011 - momentum: 0.000000 |
|
2023-10-19 01:17:48,760 epoch 7 - iter 2888/3617 - loss 0.11877865 - time (sec): 46.27 - samples/sec: 6593.24 - lr: 0.000011 - momentum: 0.000000 |
|
2023-10-19 01:17:54,087 epoch 7 - iter 3249/3617 - loss 0.12139837 - time (sec): 51.60 - samples/sec: 6624.35 - lr: 0.000010 - momentum: 0.000000 |
|
2023-10-19 01:17:59,808 epoch 7 - iter 3610/3617 - loss 0.12214986 - time (sec): 57.32 - samples/sec: 6617.30 - lr: 0.000010 - momentum: 0.000000 |
|
2023-10-19 01:17:59,917 ---------------------------------------------------------------------------------------------------- |
|
2023-10-19 01:17:59,917 EPOCH 7 done: loss 0.1222 - lr: 0.000010 |
|
2023-10-19 01:18:03,123 DEV : loss 0.18754823505878448 - f1-score (micro avg) 0.4779 |
|
2023-10-19 01:18:03,151 saving best model |
|
2023-10-19 01:18:03,186 ---------------------------------------------------------------------------------------------------- |
|
2023-10-19 01:18:09,163 epoch 8 - iter 361/3617 - loss 0.11552861 - time (sec): 5.98 - samples/sec: 6550.53 - lr: 0.000010 - momentum: 0.000000 |
|
2023-10-19 01:18:14,914 epoch 8 - iter 722/3617 - loss 0.11948353 - time (sec): 11.73 - samples/sec: 6616.21 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-19 01:18:20,735 epoch 8 - iter 1083/3617 - loss 0.11968151 - time (sec): 17.55 - samples/sec: 6671.45 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-19 01:18:26,269 epoch 8 - iter 1444/3617 - loss 0.12114434 - time (sec): 23.08 - samples/sec: 6666.92 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-19 01:18:32,065 epoch 8 - iter 1805/3617 - loss 0.11664197 - time (sec): 28.88 - samples/sec: 6667.87 - lr: 0.000008 - momentum: 0.000000 |
|
2023-10-19 01:18:37,854 epoch 8 - iter 2166/3617 - loss 0.11725016 - time (sec): 34.67 - samples/sec: 6598.38 - lr: 0.000008 - momentum: 0.000000 |
|
2023-10-19 01:18:43,593 epoch 8 - iter 2527/3617 - loss 0.11944440 - time (sec): 40.41 - samples/sec: 6575.91 - lr: 0.000008 - momentum: 0.000000 |
|
2023-10-19 01:18:49,269 epoch 8 - iter 2888/3617 - loss 0.11884190 - time (sec): 46.08 - samples/sec: 6587.45 - lr: 0.000007 - momentum: 0.000000 |
|
2023-10-19 01:18:54,994 epoch 8 - iter 3249/3617 - loss 0.11785410 - time (sec): 51.81 - samples/sec: 6583.13 - lr: 0.000007 - momentum: 0.000000 |
|
2023-10-19 01:19:00,793 epoch 8 - iter 3610/3617 - loss 0.11660685 - time (sec): 57.61 - samples/sec: 6587.20 - lr: 0.000007 - momentum: 0.000000 |
|
2023-10-19 01:19:00,903 ---------------------------------------------------------------------------------------------------- |
|
2023-10-19 01:19:00,903 EPOCH 8 done: loss 0.1166 - lr: 0.000007 |
|
2023-10-19 01:19:04,160 DEV : loss 0.19483603537082672 - f1-score (micro avg) 0.4857 |
|
2023-10-19 01:19:04,188 saving best model |
|
2023-10-19 01:19:04,220 ---------------------------------------------------------------------------------------------------- |
|
2023-10-19 01:19:10,105 epoch 9 - iter 361/3617 - loss 0.12224075 - time (sec): 5.88 - samples/sec: 6742.34 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-19 01:19:15,778 epoch 9 - iter 722/3617 - loss 0.10932434 - time (sec): 11.56 - samples/sec: 6748.35 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-19 01:19:21,542 epoch 9 - iter 1083/3617 - loss 0.11140440 - time (sec): 17.32 - samples/sec: 6728.86 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-19 01:19:27,301 epoch 9 - iter 1444/3617 - loss 0.10874201 - time (sec): 23.08 - samples/sec: 6632.17 - lr: 0.000005 - momentum: 0.000000 |
|
2023-10-19 01:19:32,820 epoch 9 - iter 1805/3617 - loss 0.10872015 - time (sec): 28.60 - samples/sec: 6732.84 - lr: 0.000005 - momentum: 0.000000 |
|
2023-10-19 01:19:38,447 epoch 9 - iter 2166/3617 - loss 0.11133825 - time (sec): 34.23 - samples/sec: 6714.00 - lr: 0.000005 - momentum: 0.000000 |
|
2023-10-19 01:19:44,220 epoch 9 - iter 2527/3617 - loss 0.11266491 - time (sec): 40.00 - samples/sec: 6670.77 - lr: 0.000004 - momentum: 0.000000 |
|
2023-10-19 01:19:50,013 epoch 9 - iter 2888/3617 - loss 0.11290616 - time (sec): 45.79 - samples/sec: 6672.15 - lr: 0.000004 - momentum: 0.000000 |
|
2023-10-19 01:19:55,727 epoch 9 - iter 3249/3617 - loss 0.11269907 - time (sec): 51.51 - samples/sec: 6647.26 - lr: 0.000004 - momentum: 0.000000 |
|
2023-10-19 01:20:01,410 epoch 9 - iter 3610/3617 - loss 0.11350583 - time (sec): 57.19 - samples/sec: 6630.19 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-19 01:20:01,524 ---------------------------------------------------------------------------------------------------- |
|
2023-10-19 01:20:01,524 EPOCH 9 done: loss 0.1135 - lr: 0.000003 |
|
2023-10-19 01:20:05,482 DEV : loss 0.19358040392398834 - f1-score (micro avg) 0.4833 |
|
2023-10-19 01:20:05,511 ---------------------------------------------------------------------------------------------------- |
|
2023-10-19 01:20:11,321 epoch 10 - iter 361/3617 - loss 0.11277088 - time (sec): 5.81 - samples/sec: 6246.22 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-19 01:20:17,167 epoch 10 - iter 722/3617 - loss 0.11290023 - time (sec): 11.66 - samples/sec: 6445.07 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-19 01:20:22,907 epoch 10 - iter 1083/3617 - loss 0.11198872 - time (sec): 17.40 - samples/sec: 6454.90 - lr: 0.000002 - momentum: 0.000000 |
|
2023-10-19 01:20:28,643 epoch 10 - iter 1444/3617 - loss 0.10861250 - time (sec): 23.13 - samples/sec: 6495.86 - lr: 0.000002 - momentum: 0.000000 |
|
2023-10-19 01:20:33,825 epoch 10 - iter 1805/3617 - loss 0.11091058 - time (sec): 28.31 - samples/sec: 6672.48 - lr: 0.000002 - momentum: 0.000000 |
|
2023-10-19 01:20:39,517 epoch 10 - iter 2166/3617 - loss 0.11258390 - time (sec): 34.01 - samples/sec: 6697.61 - lr: 0.000001 - momentum: 0.000000 |
|
2023-10-19 01:20:45,292 epoch 10 - iter 2527/3617 - loss 0.11155306 - time (sec): 39.78 - samples/sec: 6694.42 - lr: 0.000001 - momentum: 0.000000 |
|
2023-10-19 01:20:51,014 epoch 10 - iter 2888/3617 - loss 0.10931783 - time (sec): 45.50 - samples/sec: 6687.76 - lr: 0.000001 - momentum: 0.000000 |
|
2023-10-19 01:20:56,674 epoch 10 - iter 3249/3617 - loss 0.11004335 - time (sec): 51.16 - samples/sec: 6662.31 - lr: 0.000000 - momentum: 0.000000 |
|
2023-10-19 01:21:02,509 epoch 10 - iter 3610/3617 - loss 0.10947971 - time (sec): 57.00 - samples/sec: 6656.02 - lr: 0.000000 - momentum: 0.000000 |
|
2023-10-19 01:21:02,609 ---------------------------------------------------------------------------------------------------- |
|
2023-10-19 01:21:02,609 EPOCH 10 done: loss 0.1097 - lr: 0.000000 |
|
2023-10-19 01:21:05,822 DEV : loss 0.1967521756887436 - f1-score (micro avg) 0.4832 |
|
2023-10-19 01:21:05,881 ---------------------------------------------------------------------------------------------------- |
|
2023-10-19 01:21:05,881 Loading model from best epoch ... |
|
2023-10-19 01:21:05,977 SequenceTagger predicts: Dictionary with 13 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org |
|
2023-10-19 01:21:10,135 |
|
Results: |
|
- F-score (micro) 0.5273 |
|
- F-score (macro) 0.3519 |
|
- Accuracy 0.37 |
|
|
|
By class: |
|
precision recall f1-score support |
|
|
|
loc 0.5467 0.6734 0.6035 591 |
|
pers 0.4155 0.4958 0.4521 357 |
|
org 0.0000 0.0000 0.0000 79 |
|
|
|
micro avg 0.4983 0.5599 0.5273 1027 |
|
macro avg 0.3207 0.3897 0.3519 1027 |
|
weighted avg 0.4590 0.5599 0.5044 1027 |
|
|
|
2023-10-19 01:21:10,135 ---------------------------------------------------------------------------------------------------- |
|
|