Upload folder using huggingface_hub
Browse files- best-model.pt +3 -0
- dev.tsv +0 -0
- loss.tsv +11 -0
- runs/events.out.tfevents.1697679569.46dc0c540dd0.3802.15 +3 -0
- test.tsv +0 -0
- training.log +243 -0
best-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8b70ee55e2d0a6f5849c013dfae2538d3efc98ff4feae73946ec19ea4bf8aaa9
|
3 |
+
size 19045922
|
dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 01:40:14 0.0000 0.7123 0.1734 0.2495 0.2643 0.2567 0.1518
|
3 |
+
2 01:41:00 0.0000 0.1743 0.1575 0.3788 0.4039 0.3909 0.2505
|
4 |
+
3 01:41:45 0.0000 0.1433 0.1513 0.3792 0.5515 0.4494 0.3011
|
5 |
+
4 01:42:32 0.0000 0.1279 0.1521 0.4061 0.5343 0.4615 0.3095
|
6 |
+
5 01:43:18 0.0000 0.1156 0.1627 0.4052 0.5915 0.4809 0.3258
|
7 |
+
6 01:44:04 0.0000 0.1067 0.1653 0.4061 0.6213 0.4912 0.3364
|
8 |
+
7 01:44:50 0.0000 0.0993 0.1655 0.4206 0.5847 0.4892 0.3346
|
9 |
+
8 01:45:36 0.0000 0.0932 0.1720 0.4136 0.5618 0.4765 0.3226
|
10 |
+
9 01:46:23 0.0000 0.0901 0.1773 0.4225 0.5767 0.4877 0.3329
|
11 |
+
10 01:47:09 0.0000 0.0872 0.1790 0.4192 0.5847 0.4883 0.3336
|
runs/events.out.tfevents.1697679569.46dc0c540dd0.3802.15
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f6cdb16a866a707d61145fed2c18e9ce6396c23941d1edb80a8c29c1deaa0d8e
|
3 |
+
size 1018100
|
test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training.log
ADDED
@@ -0,0 +1,243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-19 01:39:29,579 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-19 01:39:29,579 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(32001, 128)
|
7 |
+
(position_embeddings): Embedding(512, 128)
|
8 |
+
(token_type_embeddings): Embedding(2, 128)
|
9 |
+
(LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-1): 2 x BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=128, out_features=128, bias=True)
|
18 |
+
(key): Linear(in_features=128, out_features=128, bias=True)
|
19 |
+
(value): Linear(in_features=128, out_features=128, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=128, out_features=128, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=128, out_features=512, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=512, out_features=128, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
(pooler): BertPooler(
|
41 |
+
(dense): Linear(in_features=128, out_features=128, bias=True)
|
42 |
+
(activation): Tanh()
|
43 |
+
)
|
44 |
+
)
|
45 |
+
)
|
46 |
+
(locked_dropout): LockedDropout(p=0.5)
|
47 |
+
(linear): Linear(in_features=128, out_features=13, bias=True)
|
48 |
+
(loss_function): CrossEntropyLoss()
|
49 |
+
)"
|
50 |
+
2023-10-19 01:39:29,579 ----------------------------------------------------------------------------------------------------
|
51 |
+
2023-10-19 01:39:29,579 MultiCorpus: 14465 train + 1392 dev + 2432 test sentences
|
52 |
+
- NER_HIPE_2022 Corpus: 14465 train + 1392 dev + 2432 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/letemps/fr/with_doc_seperator
|
53 |
+
2023-10-19 01:39:29,579 ----------------------------------------------------------------------------------------------------
|
54 |
+
2023-10-19 01:39:29,579 Train: 14465 sentences
|
55 |
+
2023-10-19 01:39:29,579 (train_with_dev=False, train_with_test=False)
|
56 |
+
2023-10-19 01:39:29,579 ----------------------------------------------------------------------------------------------------
|
57 |
+
2023-10-19 01:39:29,579 Training Params:
|
58 |
+
2023-10-19 01:39:29,579 - learning_rate: "5e-05"
|
59 |
+
2023-10-19 01:39:29,579 - mini_batch_size: "8"
|
60 |
+
2023-10-19 01:39:29,579 - max_epochs: "10"
|
61 |
+
2023-10-19 01:39:29,579 - shuffle: "True"
|
62 |
+
2023-10-19 01:39:29,579 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-10-19 01:39:29,579 Plugins:
|
64 |
+
2023-10-19 01:39:29,579 - TensorboardLogger
|
65 |
+
2023-10-19 01:39:29,579 - LinearScheduler | warmup_fraction: '0.1'
|
66 |
+
2023-10-19 01:39:29,579 ----------------------------------------------------------------------------------------------------
|
67 |
+
2023-10-19 01:39:29,579 Final evaluation on model from best epoch (best-model.pt)
|
68 |
+
2023-10-19 01:39:29,580 - metric: "('micro avg', 'f1-score')"
|
69 |
+
2023-10-19 01:39:29,580 ----------------------------------------------------------------------------------------------------
|
70 |
+
2023-10-19 01:39:29,580 Computation:
|
71 |
+
2023-10-19 01:39:29,580 - compute on device: cuda:0
|
72 |
+
2023-10-19 01:39:29,580 - embedding storage: none
|
73 |
+
2023-10-19 01:39:29,580 ----------------------------------------------------------------------------------------------------
|
74 |
+
2023-10-19 01:39:29,580 Model training base path: "hmbench-letemps/fr-dbmdz/bert-tiny-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4"
|
75 |
+
2023-10-19 01:39:29,580 ----------------------------------------------------------------------------------------------------
|
76 |
+
2023-10-19 01:39:29,580 ----------------------------------------------------------------------------------------------------
|
77 |
+
2023-10-19 01:39:29,580 Logging anything other than scalars to TensorBoard is currently not supported.
|
78 |
+
2023-10-19 01:39:33,832 epoch 1 - iter 180/1809 - loss 3.04420001 - time (sec): 4.25 - samples/sec: 8449.13 - lr: 0.000005 - momentum: 0.000000
|
79 |
+
2023-10-19 01:39:38,091 epoch 1 - iter 360/1809 - loss 2.39412590 - time (sec): 8.51 - samples/sec: 8808.44 - lr: 0.000010 - momentum: 0.000000
|
80 |
+
2023-10-19 01:39:42,356 epoch 1 - iter 540/1809 - loss 1.77159067 - time (sec): 12.78 - samples/sec: 8796.59 - lr: 0.000015 - momentum: 0.000000
|
81 |
+
2023-10-19 01:39:46,100 epoch 1 - iter 720/1809 - loss 1.42634419 - time (sec): 16.52 - samples/sec: 9015.97 - lr: 0.000020 - momentum: 0.000000
|
82 |
+
2023-10-19 01:39:50,344 epoch 1 - iter 900/1809 - loss 1.20167935 - time (sec): 20.76 - samples/sec: 8957.73 - lr: 0.000025 - momentum: 0.000000
|
83 |
+
2023-10-19 01:39:54,490 epoch 1 - iter 1080/1809 - loss 1.05023629 - time (sec): 24.91 - samples/sec: 8952.71 - lr: 0.000030 - momentum: 0.000000
|
84 |
+
2023-10-19 01:39:58,642 epoch 1 - iter 1260/1809 - loss 0.93612850 - time (sec): 29.06 - samples/sec: 8963.79 - lr: 0.000035 - momentum: 0.000000
|
85 |
+
2023-10-19 01:40:02,969 epoch 1 - iter 1440/1809 - loss 0.84232437 - time (sec): 33.39 - samples/sec: 8992.63 - lr: 0.000040 - momentum: 0.000000
|
86 |
+
2023-10-19 01:40:07,213 epoch 1 - iter 1620/1809 - loss 0.77253770 - time (sec): 37.63 - samples/sec: 9018.41 - lr: 0.000045 - momentum: 0.000000
|
87 |
+
2023-10-19 01:40:11,486 epoch 1 - iter 1800/1809 - loss 0.71434367 - time (sec): 41.91 - samples/sec: 9027.00 - lr: 0.000050 - momentum: 0.000000
|
88 |
+
2023-10-19 01:40:11,680 ----------------------------------------------------------------------------------------------------
|
89 |
+
2023-10-19 01:40:11,680 EPOCH 1 done: loss 0.7123 - lr: 0.000050
|
90 |
+
2023-10-19 01:40:13,974 DEV : loss 0.1734248250722885 - f1-score (micro avg) 0.2567
|
91 |
+
2023-10-19 01:40:14,001 saving best model
|
92 |
+
2023-10-19 01:40:14,031 ----------------------------------------------------------------------------------------------------
|
93 |
+
2023-10-19 01:40:18,185 epoch 2 - iter 180/1809 - loss 0.18923941 - time (sec): 4.15 - samples/sec: 8812.17 - lr: 0.000049 - momentum: 0.000000
|
94 |
+
2023-10-19 01:40:22,280 epoch 2 - iter 360/1809 - loss 0.18939649 - time (sec): 8.25 - samples/sec: 9004.44 - lr: 0.000049 - momentum: 0.000000
|
95 |
+
2023-10-19 01:40:26,415 epoch 2 - iter 540/1809 - loss 0.18224811 - time (sec): 12.38 - samples/sec: 8996.02 - lr: 0.000048 - momentum: 0.000000
|
96 |
+
2023-10-19 01:40:30,684 epoch 2 - iter 720/1809 - loss 0.18220968 - time (sec): 16.65 - samples/sec: 8914.54 - lr: 0.000048 - momentum: 0.000000
|
97 |
+
2023-10-19 01:40:34,851 epoch 2 - iter 900/1809 - loss 0.17987747 - time (sec): 20.82 - samples/sec: 8996.08 - lr: 0.000047 - momentum: 0.000000
|
98 |
+
2023-10-19 01:40:39,029 epoch 2 - iter 1080/1809 - loss 0.17778650 - time (sec): 25.00 - samples/sec: 8991.05 - lr: 0.000047 - momentum: 0.000000
|
99 |
+
2023-10-19 01:40:43,266 epoch 2 - iter 1260/1809 - loss 0.17945407 - time (sec): 29.23 - samples/sec: 8983.41 - lr: 0.000046 - momentum: 0.000000
|
100 |
+
2023-10-19 01:40:47,530 epoch 2 - iter 1440/1809 - loss 0.17784107 - time (sec): 33.50 - samples/sec: 8984.65 - lr: 0.000046 - momentum: 0.000000
|
101 |
+
2023-10-19 01:40:51,796 epoch 2 - iter 1620/1809 - loss 0.17638771 - time (sec): 37.76 - samples/sec: 8998.48 - lr: 0.000045 - momentum: 0.000000
|
102 |
+
2023-10-19 01:40:56,105 epoch 2 - iter 1800/1809 - loss 0.17432110 - time (sec): 42.07 - samples/sec: 8996.09 - lr: 0.000044 - momentum: 0.000000
|
103 |
+
2023-10-19 01:40:56,301 ----------------------------------------------------------------------------------------------------
|
104 |
+
2023-10-19 01:40:56,301 EPOCH 2 done: loss 0.1743 - lr: 0.000044
|
105 |
+
2023-10-19 01:41:00,145 DEV : loss 0.1575053483247757 - f1-score (micro avg) 0.3909
|
106 |
+
2023-10-19 01:41:00,172 saving best model
|
107 |
+
2023-10-19 01:41:00,205 ----------------------------------------------------------------------------------------------------
|
108 |
+
2023-10-19 01:41:04,473 epoch 3 - iter 180/1809 - loss 0.13892889 - time (sec): 4.27 - samples/sec: 9002.32 - lr: 0.000044 - momentum: 0.000000
|
109 |
+
2023-10-19 01:41:08,737 epoch 3 - iter 360/1809 - loss 0.15265984 - time (sec): 8.53 - samples/sec: 8808.50 - lr: 0.000043 - momentum: 0.000000
|
110 |
+
2023-10-19 01:41:12,982 epoch 3 - iter 540/1809 - loss 0.15372864 - time (sec): 12.78 - samples/sec: 8997.56 - lr: 0.000043 - momentum: 0.000000
|
111 |
+
2023-10-19 01:41:17,185 epoch 3 - iter 720/1809 - loss 0.15378802 - time (sec): 16.98 - samples/sec: 8940.43 - lr: 0.000042 - momentum: 0.000000
|
112 |
+
2023-10-19 01:41:21,362 epoch 3 - iter 900/1809 - loss 0.15097206 - time (sec): 21.16 - samples/sec: 8941.18 - lr: 0.000042 - momentum: 0.000000
|
113 |
+
2023-10-19 01:41:25,569 epoch 3 - iter 1080/1809 - loss 0.15094211 - time (sec): 25.36 - samples/sec: 8897.63 - lr: 0.000041 - momentum: 0.000000
|
114 |
+
2023-10-19 01:41:29,834 epoch 3 - iter 1260/1809 - loss 0.14776592 - time (sec): 29.63 - samples/sec: 8891.75 - lr: 0.000041 - momentum: 0.000000
|
115 |
+
2023-10-19 01:41:34,104 epoch 3 - iter 1440/1809 - loss 0.14536958 - time (sec): 33.90 - samples/sec: 8905.02 - lr: 0.000040 - momentum: 0.000000
|
116 |
+
2023-10-19 01:41:38,337 epoch 3 - iter 1620/1809 - loss 0.14321631 - time (sec): 38.13 - samples/sec: 8956.50 - lr: 0.000039 - momentum: 0.000000
|
117 |
+
2023-10-19 01:41:42,473 epoch 3 - iter 1800/1809 - loss 0.14343704 - time (sec): 42.27 - samples/sec: 8954.16 - lr: 0.000039 - momentum: 0.000000
|
118 |
+
2023-10-19 01:41:42,668 ----------------------------------------------------------------------------------------------------
|
119 |
+
2023-10-19 01:41:42,668 EPOCH 3 done: loss 0.1433 - lr: 0.000039
|
120 |
+
2023-10-19 01:41:45,857 DEV : loss 0.15128640830516815 - f1-score (micro avg) 0.4494
|
121 |
+
2023-10-19 01:41:45,885 saving best model
|
122 |
+
2023-10-19 01:41:45,918 ----------------------------------------------------------------------------------------------------
|
123 |
+
2023-10-19 01:41:50,115 epoch 4 - iter 180/1809 - loss 0.12278635 - time (sec): 4.20 - samples/sec: 8956.04 - lr: 0.000038 - momentum: 0.000000
|
124 |
+
2023-10-19 01:41:54,414 epoch 4 - iter 360/1809 - loss 0.12152527 - time (sec): 8.50 - samples/sec: 8859.92 - lr: 0.000038 - momentum: 0.000000
|
125 |
+
2023-10-19 01:41:58,551 epoch 4 - iter 540/1809 - loss 0.12629146 - time (sec): 12.63 - samples/sec: 9036.33 - lr: 0.000037 - momentum: 0.000000
|
126 |
+
2023-10-19 01:42:02,773 epoch 4 - iter 720/1809 - loss 0.12649074 - time (sec): 16.85 - samples/sec: 8996.97 - lr: 0.000037 - momentum: 0.000000
|
127 |
+
2023-10-19 01:42:07,022 epoch 4 - iter 900/1809 - loss 0.12832559 - time (sec): 21.10 - samples/sec: 8923.83 - lr: 0.000036 - momentum: 0.000000
|
128 |
+
2023-10-19 01:42:11,302 epoch 4 - iter 1080/1809 - loss 0.12966244 - time (sec): 25.38 - samples/sec: 8937.72 - lr: 0.000036 - momentum: 0.000000
|
129 |
+
2023-10-19 01:42:15,650 epoch 4 - iter 1260/1809 - loss 0.12766548 - time (sec): 29.73 - samples/sec: 8928.73 - lr: 0.000035 - momentum: 0.000000
|
130 |
+
2023-10-19 01:42:19,882 epoch 4 - iter 1440/1809 - loss 0.12653062 - time (sec): 33.96 - samples/sec: 8911.98 - lr: 0.000034 - momentum: 0.000000
|
131 |
+
2023-10-19 01:42:24,121 epoch 4 - iter 1620/1809 - loss 0.12617595 - time (sec): 38.20 - samples/sec: 8930.45 - lr: 0.000034 - momentum: 0.000000
|
132 |
+
2023-10-19 01:42:28,266 epoch 4 - iter 1800/1809 - loss 0.12779140 - time (sec): 42.35 - samples/sec: 8932.38 - lr: 0.000033 - momentum: 0.000000
|
133 |
+
2023-10-19 01:42:28,457 ----------------------------------------------------------------------------------------------------
|
134 |
+
2023-10-19 01:42:28,457 EPOCH 4 done: loss 0.1279 - lr: 0.000033
|
135 |
+
2023-10-19 01:42:32,317 DEV : loss 0.15212927758693695 - f1-score (micro avg) 0.4615
|
136 |
+
2023-10-19 01:42:32,344 saving best model
|
137 |
+
2023-10-19 01:42:32,377 ----------------------------------------------------------------------------------------------------
|
138 |
+
2023-10-19 01:42:36,505 epoch 5 - iter 180/1809 - loss 0.11457552 - time (sec): 4.13 - samples/sec: 9118.90 - lr: 0.000033 - momentum: 0.000000
|
139 |
+
2023-10-19 01:42:40,688 epoch 5 - iter 360/1809 - loss 0.11115056 - time (sec): 8.31 - samples/sec: 8979.27 - lr: 0.000032 - momentum: 0.000000
|
140 |
+
2023-10-19 01:42:44,935 epoch 5 - iter 540/1809 - loss 0.11379745 - time (sec): 12.56 - samples/sec: 8816.95 - lr: 0.000032 - momentum: 0.000000
|
141 |
+
2023-10-19 01:42:49,154 epoch 5 - iter 720/1809 - loss 0.11718434 - time (sec): 16.78 - samples/sec: 8852.26 - lr: 0.000031 - momentum: 0.000000
|
142 |
+
2023-10-19 01:42:53,432 epoch 5 - iter 900/1809 - loss 0.11789862 - time (sec): 21.05 - samples/sec: 8870.04 - lr: 0.000031 - momentum: 0.000000
|
143 |
+
2023-10-19 01:42:57,602 epoch 5 - iter 1080/1809 - loss 0.11519563 - time (sec): 25.22 - samples/sec: 8864.53 - lr: 0.000030 - momentum: 0.000000
|
144 |
+
2023-10-19 01:43:01,826 epoch 5 - iter 1260/1809 - loss 0.11691779 - time (sec): 29.45 - samples/sec: 8916.53 - lr: 0.000029 - momentum: 0.000000
|
145 |
+
2023-10-19 01:43:06,125 epoch 5 - iter 1440/1809 - loss 0.11649889 - time (sec): 33.75 - samples/sec: 8926.80 - lr: 0.000029 - momentum: 0.000000
|
146 |
+
2023-10-19 01:43:10,343 epoch 5 - iter 1620/1809 - loss 0.11628702 - time (sec): 37.97 - samples/sec: 8950.98 - lr: 0.000028 - momentum: 0.000000
|
147 |
+
2023-10-19 01:43:14,626 epoch 5 - iter 1800/1809 - loss 0.11539962 - time (sec): 42.25 - samples/sec: 8949.63 - lr: 0.000028 - momentum: 0.000000
|
148 |
+
2023-10-19 01:43:14,827 ----------------------------------------------------------------------------------------------------
|
149 |
+
2023-10-19 01:43:14,828 EPOCH 5 done: loss 0.1156 - lr: 0.000028
|
150 |
+
2023-10-19 01:43:18,024 DEV : loss 0.16273775696754456 - f1-score (micro avg) 0.4809
|
151 |
+
2023-10-19 01:43:18,052 saving best model
|
152 |
+
2023-10-19 01:43:18,091 ----------------------------------------------------------------------------------------------------
|
153 |
+
2023-10-19 01:43:22,287 epoch 6 - iter 180/1809 - loss 0.11369687 - time (sec): 4.20 - samples/sec: 8885.91 - lr: 0.000027 - momentum: 0.000000
|
154 |
+
2023-10-19 01:43:26,419 epoch 6 - iter 360/1809 - loss 0.10397102 - time (sec): 8.33 - samples/sec: 9027.87 - lr: 0.000027 - momentum: 0.000000
|
155 |
+
2023-10-19 01:43:30,641 epoch 6 - iter 540/1809 - loss 0.10451339 - time (sec): 12.55 - samples/sec: 9069.09 - lr: 0.000026 - momentum: 0.000000
|
156 |
+
2023-10-19 01:43:34,859 epoch 6 - iter 720/1809 - loss 0.10415941 - time (sec): 16.77 - samples/sec: 8952.01 - lr: 0.000026 - momentum: 0.000000
|
157 |
+
2023-10-19 01:43:39,120 epoch 6 - iter 900/1809 - loss 0.10131086 - time (sec): 21.03 - samples/sec: 8826.73 - lr: 0.000025 - momentum: 0.000000
|
158 |
+
2023-10-19 01:43:43,415 epoch 6 - iter 1080/1809 - loss 0.10388199 - time (sec): 25.32 - samples/sec: 8864.36 - lr: 0.000024 - momentum: 0.000000
|
159 |
+
2023-10-19 01:43:47,760 epoch 6 - iter 1260/1809 - loss 0.10374079 - time (sec): 29.67 - samples/sec: 8853.19 - lr: 0.000024 - momentum: 0.000000
|
160 |
+
2023-10-19 01:43:52,647 epoch 6 - iter 1440/1809 - loss 0.10431911 - time (sec): 34.55 - samples/sec: 8709.60 - lr: 0.000023 - momentum: 0.000000
|
161 |
+
2023-10-19 01:43:56,907 epoch 6 - iter 1620/1809 - loss 0.10493723 - time (sec): 38.82 - samples/sec: 8752.08 - lr: 0.000023 - momentum: 0.000000
|
162 |
+
2023-10-19 01:44:01,350 epoch 6 - iter 1800/1809 - loss 0.10667085 - time (sec): 43.26 - samples/sec: 8747.02 - lr: 0.000022 - momentum: 0.000000
|
163 |
+
2023-10-19 01:44:01,560 ----------------------------------------------------------------------------------------------------
|
164 |
+
2023-10-19 01:44:01,561 EPOCH 6 done: loss 0.1067 - lr: 0.000022
|
165 |
+
2023-10-19 01:44:04,766 DEV : loss 0.16526678204536438 - f1-score (micro avg) 0.4912
|
166 |
+
2023-10-19 01:44:04,794 saving best model
|
167 |
+
2023-10-19 01:44:04,827 ----------------------------------------------------------------------------------------------------
|
168 |
+
2023-10-19 01:44:09,069 epoch 7 - iter 180/1809 - loss 0.10175065 - time (sec): 4.24 - samples/sec: 8932.79 - lr: 0.000022 - momentum: 0.000000
|
169 |
+
2023-10-19 01:44:13,227 epoch 7 - iter 360/1809 - loss 0.10175187 - time (sec): 8.40 - samples/sec: 8883.86 - lr: 0.000021 - momentum: 0.000000
|
170 |
+
2023-10-19 01:44:17,449 epoch 7 - iter 540/1809 - loss 0.09763149 - time (sec): 12.62 - samples/sec: 8957.13 - lr: 0.000021 - momentum: 0.000000
|
171 |
+
2023-10-19 01:44:21,487 epoch 7 - iter 720/1809 - loss 0.09845246 - time (sec): 16.66 - samples/sec: 9087.13 - lr: 0.000020 - momentum: 0.000000
|
172 |
+
2023-10-19 01:44:25,705 epoch 7 - iter 900/1809 - loss 0.09992038 - time (sec): 20.88 - samples/sec: 9068.53 - lr: 0.000019 - momentum: 0.000000
|
173 |
+
2023-10-19 01:44:30,014 epoch 7 - iter 1080/1809 - loss 0.09902913 - time (sec): 25.19 - samples/sec: 9064.18 - lr: 0.000019 - momentum: 0.000000
|
174 |
+
2023-10-19 01:44:34,276 epoch 7 - iter 1260/1809 - loss 0.09771706 - time (sec): 29.45 - samples/sec: 9032.63 - lr: 0.000018 - momentum: 0.000000
|
175 |
+
2023-10-19 01:44:38,551 epoch 7 - iter 1440/1809 - loss 0.09670512 - time (sec): 33.72 - samples/sec: 9023.43 - lr: 0.000018 - momentum: 0.000000
|
176 |
+
2023-10-19 01:44:42,761 epoch 7 - iter 1620/1809 - loss 0.09868533 - time (sec): 37.93 - samples/sec: 8987.96 - lr: 0.000017 - momentum: 0.000000
|
177 |
+
2023-10-19 01:44:47,125 epoch 7 - iter 1800/1809 - loss 0.09925492 - time (sec): 42.30 - samples/sec: 8948.09 - lr: 0.000017 - momentum: 0.000000
|
178 |
+
2023-10-19 01:44:47,325 ----------------------------------------------------------------------------------------------------
|
179 |
+
2023-10-19 01:44:47,325 EPOCH 7 done: loss 0.0993 - lr: 0.000017
|
180 |
+
2023-10-19 01:44:50,521 DEV : loss 0.1655406653881073 - f1-score (micro avg) 0.4892
|
181 |
+
2023-10-19 01:44:50,549 ----------------------------------------------------------------------------------------------------
|
182 |
+
2023-10-19 01:44:54,538 epoch 8 - iter 180/1809 - loss 0.08987194 - time (sec): 3.99 - samples/sec: 9767.08 - lr: 0.000016 - momentum: 0.000000
|
183 |
+
2023-10-19 01:44:58,907 epoch 8 - iter 360/1809 - loss 0.09430654 - time (sec): 8.36 - samples/sec: 9250.17 - lr: 0.000016 - momentum: 0.000000
|
184 |
+
2023-10-19 01:45:03,904 epoch 8 - iter 540/1809 - loss 0.09522618 - time (sec): 13.35 - samples/sec: 8738.18 - lr: 0.000015 - momentum: 0.000000
|
185 |
+
2023-10-19 01:45:08,121 epoch 8 - iter 720/1809 - loss 0.09554787 - time (sec): 17.57 - samples/sec: 8738.51 - lr: 0.000014 - momentum: 0.000000
|
186 |
+
2023-10-19 01:45:12,567 epoch 8 - iter 900/1809 - loss 0.09292183 - time (sec): 22.02 - samples/sec: 8720.10 - lr: 0.000014 - momentum: 0.000000
|
187 |
+
2023-10-19 01:45:16,729 epoch 8 - iter 1080/1809 - loss 0.09283442 - time (sec): 26.18 - samples/sec: 8714.94 - lr: 0.000013 - momentum: 0.000000
|
188 |
+
2023-10-19 01:45:21,011 epoch 8 - iter 1260/1809 - loss 0.09407078 - time (sec): 30.46 - samples/sec: 8697.93 - lr: 0.000013 - momentum: 0.000000
|
189 |
+
2023-10-19 01:45:25,184 epoch 8 - iter 1440/1809 - loss 0.09382524 - time (sec): 34.63 - samples/sec: 8724.49 - lr: 0.000012 - momentum: 0.000000
|
190 |
+
2023-10-19 01:45:29,432 epoch 8 - iter 1620/1809 - loss 0.09358378 - time (sec): 38.88 - samples/sec: 8747.52 - lr: 0.000012 - momentum: 0.000000
|
191 |
+
2023-10-19 01:45:33,540 epoch 8 - iter 1800/1809 - loss 0.09294724 - time (sec): 42.99 - samples/sec: 8797.83 - lr: 0.000011 - momentum: 0.000000
|
192 |
+
2023-10-19 01:45:33,719 ----------------------------------------------------------------------------------------------------
|
193 |
+
2023-10-19 01:45:33,720 EPOCH 8 done: loss 0.0932 - lr: 0.000011
|
194 |
+
2023-10-19 01:45:36,937 DEV : loss 0.17200641334056854 - f1-score (micro avg) 0.4765
|
195 |
+
2023-10-19 01:45:36,966 ----------------------------------------------------------------------------------------------------
|
196 |
+
2023-10-19 01:45:41,335 epoch 9 - iter 180/1809 - loss 0.09874270 - time (sec): 4.37 - samples/sec: 9050.22 - lr: 0.000011 - momentum: 0.000000
|
197 |
+
2023-10-19 01:45:45,582 epoch 9 - iter 360/1809 - loss 0.08796417 - time (sec): 8.62 - samples/sec: 9016.35 - lr: 0.000010 - momentum: 0.000000
|
198 |
+
2023-10-19 01:45:49,799 epoch 9 - iter 540/1809 - loss 0.09019361 - time (sec): 12.83 - samples/sec: 9061.73 - lr: 0.000009 - momentum: 0.000000
|
199 |
+
2023-10-19 01:45:53,991 epoch 9 - iter 720/1809 - loss 0.08746996 - time (sec): 17.02 - samples/sec: 8957.76 - lr: 0.000009 - momentum: 0.000000
|
200 |
+
2023-10-19 01:45:58,253 epoch 9 - iter 900/1809 - loss 0.08620817 - time (sec): 21.29 - samples/sec: 9022.78 - lr: 0.000008 - momentum: 0.000000
|
201 |
+
2023-10-19 01:46:02,447 epoch 9 - iter 1080/1809 - loss 0.08880201 - time (sec): 25.48 - samples/sec: 8990.05 - lr: 0.000008 - momentum: 0.000000
|
202 |
+
2023-10-19 01:46:06,595 epoch 9 - iter 1260/1809 - loss 0.08994610 - time (sec): 29.63 - samples/sec: 8976.71 - lr: 0.000007 - momentum: 0.000000
|
203 |
+
2023-10-19 01:46:10,821 epoch 9 - iter 1440/1809 - loss 0.08980005 - time (sec): 33.85 - samples/sec: 9007.29 - lr: 0.000007 - momentum: 0.000000
|
204 |
+
2023-10-19 01:46:15,046 epoch 9 - iter 1620/1809 - loss 0.09016965 - time (sec): 38.08 - samples/sec: 8966.36 - lr: 0.000006 - momentum: 0.000000
|
205 |
+
2023-10-19 01:46:19,235 epoch 9 - iter 1800/1809 - loss 0.09005114 - time (sec): 42.27 - samples/sec: 8941.44 - lr: 0.000006 - momentum: 0.000000
|
206 |
+
2023-10-19 01:46:19,432 ----------------------------------------------------------------------------------------------------
|
207 |
+
2023-10-19 01:46:19,432 EPOCH 9 done: loss 0.0901 - lr: 0.000006
|
208 |
+
2023-10-19 01:46:23,260 DEV : loss 0.1773018091917038 - f1-score (micro avg) 0.4877
|
209 |
+
2023-10-19 01:46:23,288 ----------------------------------------------------------------------------------------------------
|
210 |
+
2023-10-19 01:46:27,362 epoch 10 - iter 180/1809 - loss 0.08558466 - time (sec): 4.07 - samples/sec: 8868.97 - lr: 0.000005 - momentum: 0.000000
|
211 |
+
2023-10-19 01:46:31,568 epoch 10 - iter 360/1809 - loss 0.08733092 - time (sec): 8.28 - samples/sec: 9040.72 - lr: 0.000004 - momentum: 0.000000
|
212 |
+
2023-10-19 01:46:35,723 epoch 10 - iter 540/1809 - loss 0.08811151 - time (sec): 12.43 - samples/sec: 9006.82 - lr: 0.000004 - momentum: 0.000000
|
213 |
+
2023-10-19 01:46:40,017 epoch 10 - iter 720/1809 - loss 0.08584389 - time (sec): 16.73 - samples/sec: 8953.08 - lr: 0.000003 - momentum: 0.000000
|
214 |
+
2023-10-19 01:46:44,293 epoch 10 - iter 900/1809 - loss 0.08722287 - time (sec): 21.00 - samples/sec: 8968.51 - lr: 0.000003 - momentum: 0.000000
|
215 |
+
2023-10-19 01:46:48,559 epoch 10 - iter 1080/1809 - loss 0.08921336 - time (sec): 25.27 - samples/sec: 8984.04 - lr: 0.000002 - momentum: 0.000000
|
216 |
+
2023-10-19 01:46:52,844 epoch 10 - iter 1260/1809 - loss 0.08817541 - time (sec): 29.56 - samples/sec: 8989.90 - lr: 0.000002 - momentum: 0.000000
|
217 |
+
2023-10-19 01:46:57,060 epoch 10 - iter 1440/1809 - loss 0.08719774 - time (sec): 33.77 - samples/sec: 8989.84 - lr: 0.000001 - momentum: 0.000000
|
218 |
+
2023-10-19 01:47:01,289 epoch 10 - iter 1620/1809 - loss 0.08762114 - time (sec): 38.00 - samples/sec: 8944.19 - lr: 0.000001 - momentum: 0.000000
|
219 |
+
2023-10-19 01:47:05,579 epoch 10 - iter 1800/1809 - loss 0.08713337 - time (sec): 42.29 - samples/sec: 8947.54 - lr: 0.000000 - momentum: 0.000000
|
220 |
+
2023-10-19 01:47:05,770 ----------------------------------------------------------------------------------------------------
|
221 |
+
2023-10-19 01:47:05,770 EPOCH 10 done: loss 0.0872 - lr: 0.000000
|
222 |
+
2023-10-19 01:47:08,983 DEV : loss 0.17904870212078094 - f1-score (micro avg) 0.4883
|
223 |
+
2023-10-19 01:47:09,043 ----------------------------------------------------------------------------------------------------
|
224 |
+
2023-10-19 01:47:09,043 Loading model from best epoch ...
|
225 |
+
2023-10-19 01:47:09,124 SequenceTagger predicts: Dictionary with 13 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org
|
226 |
+
2023-10-19 01:47:13,241
|
227 |
+
Results:
|
228 |
+
- F-score (micro) 0.5203
|
229 |
+
- F-score (macro) 0.3446
|
230 |
+
- Accuracy 0.3646
|
231 |
+
|
232 |
+
By class:
|
233 |
+
precision recall f1-score support
|
234 |
+
|
235 |
+
loc 0.4966 0.7343 0.5925 591
|
236 |
+
pers 0.3922 0.5042 0.4412 357
|
237 |
+
org 0.0000 0.0000 0.0000 79
|
238 |
+
|
239 |
+
micro avg 0.4606 0.5979 0.5203 1027
|
240 |
+
macro avg 0.2962 0.4129 0.3446 1027
|
241 |
+
weighted avg 0.4221 0.5979 0.4943 1027
|
242 |
+
|
243 |
+
2023-10-19 01:47:13,241 ----------------------------------------------------------------------------------------------------
|