File size: 24,165 Bytes
f70f6c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
2023-10-19 10:38:20,282 ----------------------------------------------------------------------------------------------------
2023-10-19 10:38:20,282 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(32001, 128)
        (position_embeddings): Embedding(512, 128)
        (token_type_embeddings): Embedding(2, 128)
        (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-1): 2 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=128, out_features=128, bias=True)
                (key): Linear(in_features=128, out_features=128, bias=True)
                (value): Linear(in_features=128, out_features=128, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=128, out_features=128, bias=True)
                (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=128, out_features=512, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=512, out_features=128, bias=True)
              (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=128, out_features=128, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=128, out_features=17, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-19 10:38:20,282 ----------------------------------------------------------------------------------------------------
2023-10-19 10:38:20,282 MultiCorpus: 20847 train + 1123 dev + 3350 test sentences
 - NER_HIPE_2022 Corpus: 20847 train + 1123 dev + 3350 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/newseye/de/with_doc_seperator
2023-10-19 10:38:20,282 ----------------------------------------------------------------------------------------------------
2023-10-19 10:38:20,282 Train:  20847 sentences
2023-10-19 10:38:20,282         (train_with_dev=False, train_with_test=False)
2023-10-19 10:38:20,282 ----------------------------------------------------------------------------------------------------
2023-10-19 10:38:20,282 Training Params:
2023-10-19 10:38:20,282  - learning_rate: "3e-05" 
2023-10-19 10:38:20,283  - mini_batch_size: "4"
2023-10-19 10:38:20,283  - max_epochs: "10"
2023-10-19 10:38:20,283  - shuffle: "True"
2023-10-19 10:38:20,283 ----------------------------------------------------------------------------------------------------
2023-10-19 10:38:20,283 Plugins:
2023-10-19 10:38:20,283  - TensorboardLogger
2023-10-19 10:38:20,283  - LinearScheduler | warmup_fraction: '0.1'
2023-10-19 10:38:20,283 ----------------------------------------------------------------------------------------------------
2023-10-19 10:38:20,283 Final evaluation on model from best epoch (best-model.pt)
2023-10-19 10:38:20,283  - metric: "('micro avg', 'f1-score')"
2023-10-19 10:38:20,283 ----------------------------------------------------------------------------------------------------
2023-10-19 10:38:20,283 Computation:
2023-10-19 10:38:20,283  - compute on device: cuda:0
2023-10-19 10:38:20,283  - embedding storage: none
2023-10-19 10:38:20,283 ----------------------------------------------------------------------------------------------------
2023-10-19 10:38:20,283 Model training base path: "hmbench-newseye/de-dbmdz/bert-tiny-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2"
2023-10-19 10:38:20,283 ----------------------------------------------------------------------------------------------------
2023-10-19 10:38:20,283 ----------------------------------------------------------------------------------------------------
2023-10-19 10:38:20,283 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-19 10:38:29,211 epoch 1 - iter 521/5212 - loss 2.72371222 - time (sec): 8.93 - samples/sec: 4096.81 - lr: 0.000003 - momentum: 0.000000
2023-10-19 10:38:37,636 epoch 1 - iter 1042/5212 - loss 2.05502782 - time (sec): 17.35 - samples/sec: 4193.38 - lr: 0.000006 - momentum: 0.000000
2023-10-19 10:38:45,775 epoch 1 - iter 1563/5212 - loss 1.58883158 - time (sec): 25.49 - samples/sec: 4304.23 - lr: 0.000009 - momentum: 0.000000
2023-10-19 10:38:54,422 epoch 1 - iter 2084/5212 - loss 1.32512439 - time (sec): 34.14 - samples/sec: 4326.46 - lr: 0.000012 - momentum: 0.000000
2023-10-19 10:39:02,797 epoch 1 - iter 2605/5212 - loss 1.17407642 - time (sec): 42.51 - samples/sec: 4404.91 - lr: 0.000015 - momentum: 0.000000
2023-10-19 10:39:11,106 epoch 1 - iter 3126/5212 - loss 1.08043972 - time (sec): 50.82 - samples/sec: 4390.07 - lr: 0.000018 - momentum: 0.000000
2023-10-19 10:39:19,406 epoch 1 - iter 3647/5212 - loss 1.01154260 - time (sec): 59.12 - samples/sec: 4394.12 - lr: 0.000021 - momentum: 0.000000
2023-10-19 10:39:27,380 epoch 1 - iter 4168/5212 - loss 0.94868657 - time (sec): 67.10 - samples/sec: 4397.60 - lr: 0.000024 - momentum: 0.000000
2023-10-19 10:39:35,900 epoch 1 - iter 4689/5212 - loss 0.88980347 - time (sec): 75.62 - samples/sec: 4380.26 - lr: 0.000027 - momentum: 0.000000
2023-10-19 10:39:44,202 epoch 1 - iter 5210/5212 - loss 0.84260434 - time (sec): 83.92 - samples/sec: 4377.91 - lr: 0.000030 - momentum: 0.000000
2023-10-19 10:39:44,234 ----------------------------------------------------------------------------------------------------
2023-10-19 10:39:44,234 EPOCH 1 done: loss 0.8426 - lr: 0.000030
2023-10-19 10:39:46,475 DEV : loss 0.1433752328157425 - f1-score (micro avg)  0.0291
2023-10-19 10:39:46,497 saving best model
2023-10-19 10:39:46,526 ----------------------------------------------------------------------------------------------------
2023-10-19 10:39:54,611 epoch 2 - iter 521/5212 - loss 0.40879602 - time (sec): 8.09 - samples/sec: 4230.25 - lr: 0.000030 - momentum: 0.000000
2023-10-19 10:40:02,957 epoch 2 - iter 1042/5212 - loss 0.41373491 - time (sec): 16.43 - samples/sec: 4320.03 - lr: 0.000029 - momentum: 0.000000
2023-10-19 10:40:11,068 epoch 2 - iter 1563/5212 - loss 0.41110618 - time (sec): 24.54 - samples/sec: 4287.77 - lr: 0.000029 - momentum: 0.000000
2023-10-19 10:40:19,346 epoch 2 - iter 2084/5212 - loss 0.39790099 - time (sec): 32.82 - samples/sec: 4380.84 - lr: 0.000029 - momentum: 0.000000
2023-10-19 10:40:27,777 epoch 2 - iter 2605/5212 - loss 0.39498142 - time (sec): 41.25 - samples/sec: 4415.85 - lr: 0.000028 - momentum: 0.000000
2023-10-19 10:40:36,056 epoch 2 - iter 3126/5212 - loss 0.38607733 - time (sec): 49.53 - samples/sec: 4425.77 - lr: 0.000028 - momentum: 0.000000
2023-10-19 10:40:44,415 epoch 2 - iter 3647/5212 - loss 0.37832413 - time (sec): 57.89 - samples/sec: 4438.26 - lr: 0.000028 - momentum: 0.000000
2023-10-19 10:40:53,047 epoch 2 - iter 4168/5212 - loss 0.37306540 - time (sec): 66.52 - samples/sec: 4423.81 - lr: 0.000027 - momentum: 0.000000
2023-10-19 10:41:01,276 epoch 2 - iter 4689/5212 - loss 0.36784622 - time (sec): 74.75 - samples/sec: 4421.81 - lr: 0.000027 - momentum: 0.000000
2023-10-19 10:41:09,649 epoch 2 - iter 5210/5212 - loss 0.36564089 - time (sec): 83.12 - samples/sec: 4419.15 - lr: 0.000027 - momentum: 0.000000
2023-10-19 10:41:09,684 ----------------------------------------------------------------------------------------------------
2023-10-19 10:41:09,684 EPOCH 2 done: loss 0.3656 - lr: 0.000027
2023-10-19 10:41:14,780 DEV : loss 0.1391393542289734 - f1-score (micro avg)  0.2928
2023-10-19 10:41:14,804 saving best model
2023-10-19 10:41:14,840 ----------------------------------------------------------------------------------------------------
2023-10-19 10:41:23,076 epoch 3 - iter 521/5212 - loss 0.32466550 - time (sec): 8.24 - samples/sec: 4448.41 - lr: 0.000026 - momentum: 0.000000
2023-10-19 10:41:31,416 epoch 3 - iter 1042/5212 - loss 0.31821062 - time (sec): 16.58 - samples/sec: 4451.66 - lr: 0.000026 - momentum: 0.000000
2023-10-19 10:41:39,462 epoch 3 - iter 1563/5212 - loss 0.32728696 - time (sec): 24.62 - samples/sec: 4451.18 - lr: 0.000026 - momentum: 0.000000
2023-10-19 10:41:47,786 epoch 3 - iter 2084/5212 - loss 0.31607836 - time (sec): 32.95 - samples/sec: 4487.01 - lr: 0.000025 - momentum: 0.000000
2023-10-19 10:41:56,154 epoch 3 - iter 2605/5212 - loss 0.31480478 - time (sec): 41.31 - samples/sec: 4494.25 - lr: 0.000025 - momentum: 0.000000
2023-10-19 10:42:04,737 epoch 3 - iter 3126/5212 - loss 0.31038250 - time (sec): 49.90 - samples/sec: 4473.56 - lr: 0.000025 - momentum: 0.000000
2023-10-19 10:42:12,965 epoch 3 - iter 3647/5212 - loss 0.31026995 - time (sec): 58.12 - samples/sec: 4453.95 - lr: 0.000024 - momentum: 0.000000
2023-10-19 10:42:21,291 epoch 3 - iter 4168/5212 - loss 0.31015311 - time (sec): 66.45 - samples/sec: 4444.22 - lr: 0.000024 - momentum: 0.000000
2023-10-19 10:42:29,486 epoch 3 - iter 4689/5212 - loss 0.31207638 - time (sec): 74.65 - samples/sec: 4429.21 - lr: 0.000024 - momentum: 0.000000
2023-10-19 10:42:37,697 epoch 3 - iter 5210/5212 - loss 0.31193129 - time (sec): 82.86 - samples/sec: 4433.61 - lr: 0.000023 - momentum: 0.000000
2023-10-19 10:42:37,733 ----------------------------------------------------------------------------------------------------
2023-10-19 10:42:37,733 EPOCH 3 done: loss 0.3119 - lr: 0.000023
2023-10-19 10:42:42,852 DEV : loss 0.13720223307609558 - f1-score (micro avg)  0.311
2023-10-19 10:42:42,876 saving best model
2023-10-19 10:42:42,916 ----------------------------------------------------------------------------------------------------
2023-10-19 10:42:51,333 epoch 4 - iter 521/5212 - loss 0.25709768 - time (sec): 8.42 - samples/sec: 4514.44 - lr: 0.000023 - momentum: 0.000000
2023-10-19 10:42:59,518 epoch 4 - iter 1042/5212 - loss 0.26137660 - time (sec): 16.60 - samples/sec: 4367.48 - lr: 0.000023 - momentum: 0.000000
2023-10-19 10:43:07,636 epoch 4 - iter 1563/5212 - loss 0.27629460 - time (sec): 24.72 - samples/sec: 4311.54 - lr: 0.000022 - momentum: 0.000000
2023-10-19 10:43:15,953 epoch 4 - iter 2084/5212 - loss 0.27504062 - time (sec): 33.04 - samples/sec: 4377.33 - lr: 0.000022 - momentum: 0.000000
2023-10-19 10:43:24,401 epoch 4 - iter 2605/5212 - loss 0.27571513 - time (sec): 41.48 - samples/sec: 4448.97 - lr: 0.000022 - momentum: 0.000000
2023-10-19 10:43:32,741 epoch 4 - iter 3126/5212 - loss 0.27824346 - time (sec): 49.82 - samples/sec: 4441.02 - lr: 0.000021 - momentum: 0.000000
2023-10-19 10:43:41,037 epoch 4 - iter 3647/5212 - loss 0.27812047 - time (sec): 58.12 - samples/sec: 4436.80 - lr: 0.000021 - momentum: 0.000000
2023-10-19 10:43:49,174 epoch 4 - iter 4168/5212 - loss 0.28260826 - time (sec): 66.26 - samples/sec: 4408.59 - lr: 0.000021 - momentum: 0.000000
2023-10-19 10:43:57,417 epoch 4 - iter 4689/5212 - loss 0.28076208 - time (sec): 74.50 - samples/sec: 4423.38 - lr: 0.000020 - momentum: 0.000000
2023-10-19 10:44:05,823 epoch 4 - iter 5210/5212 - loss 0.27822833 - time (sec): 82.91 - samples/sec: 4430.02 - lr: 0.000020 - momentum: 0.000000
2023-10-19 10:44:05,856 ----------------------------------------------------------------------------------------------------
2023-10-19 10:44:05,856 EPOCH 4 done: loss 0.2782 - lr: 0.000020
2023-10-19 10:44:11,009 DEV : loss 0.14805111289024353 - f1-score (micro avg)  0.2656
2023-10-19 10:44:11,033 ----------------------------------------------------------------------------------------------------
2023-10-19 10:44:19,265 epoch 5 - iter 521/5212 - loss 0.25458992 - time (sec): 8.23 - samples/sec: 4663.96 - lr: 0.000020 - momentum: 0.000000
2023-10-19 10:44:27,618 epoch 5 - iter 1042/5212 - loss 0.23812930 - time (sec): 16.58 - samples/sec: 4645.30 - lr: 0.000019 - momentum: 0.000000
2023-10-19 10:44:35,825 epoch 5 - iter 1563/5212 - loss 0.23909797 - time (sec): 24.79 - samples/sec: 4518.74 - lr: 0.000019 - momentum: 0.000000
2023-10-19 10:44:44,069 epoch 5 - iter 2084/5212 - loss 0.24733360 - time (sec): 33.04 - samples/sec: 4498.14 - lr: 0.000019 - momentum: 0.000000
2023-10-19 10:44:52,390 epoch 5 - iter 2605/5212 - loss 0.24607385 - time (sec): 41.36 - samples/sec: 4479.65 - lr: 0.000018 - momentum: 0.000000
2023-10-19 10:45:00,692 epoch 5 - iter 3126/5212 - loss 0.25227478 - time (sec): 49.66 - samples/sec: 4455.06 - lr: 0.000018 - momentum: 0.000000
2023-10-19 10:45:08,913 epoch 5 - iter 3647/5212 - loss 0.25331088 - time (sec): 57.88 - samples/sec: 4439.80 - lr: 0.000018 - momentum: 0.000000
2023-10-19 10:45:17,372 epoch 5 - iter 4168/5212 - loss 0.25226388 - time (sec): 66.34 - samples/sec: 4444.21 - lr: 0.000017 - momentum: 0.000000
2023-10-19 10:45:25,748 epoch 5 - iter 4689/5212 - loss 0.25437720 - time (sec): 74.71 - samples/sec: 4442.17 - lr: 0.000017 - momentum: 0.000000
2023-10-19 10:45:34,004 epoch 5 - iter 5210/5212 - loss 0.25346983 - time (sec): 82.97 - samples/sec: 4428.05 - lr: 0.000017 - momentum: 0.000000
2023-10-19 10:45:34,030 ----------------------------------------------------------------------------------------------------
2023-10-19 10:45:34,030 EPOCH 5 done: loss 0.2535 - lr: 0.000017
2023-10-19 10:45:39,162 DEV : loss 0.1490069180727005 - f1-score (micro avg)  0.2855
2023-10-19 10:45:39,197 ----------------------------------------------------------------------------------------------------
2023-10-19 10:45:47,655 epoch 6 - iter 521/5212 - loss 0.26624853 - time (sec): 8.46 - samples/sec: 3991.54 - lr: 0.000016 - momentum: 0.000000
2023-10-19 10:45:56,023 epoch 6 - iter 1042/5212 - loss 0.25453009 - time (sec): 16.82 - samples/sec: 4277.48 - lr: 0.000016 - momentum: 0.000000
2023-10-19 10:46:04,383 epoch 6 - iter 1563/5212 - loss 0.24457171 - time (sec): 25.18 - samples/sec: 4370.58 - lr: 0.000016 - momentum: 0.000000
2023-10-19 10:46:12,858 epoch 6 - iter 2084/5212 - loss 0.23560982 - time (sec): 33.66 - samples/sec: 4419.97 - lr: 0.000015 - momentum: 0.000000
2023-10-19 10:46:21,179 epoch 6 - iter 2605/5212 - loss 0.23329802 - time (sec): 41.98 - samples/sec: 4434.39 - lr: 0.000015 - momentum: 0.000000
2023-10-19 10:46:29,142 epoch 6 - iter 3126/5212 - loss 0.23211029 - time (sec): 49.94 - samples/sec: 4480.71 - lr: 0.000015 - momentum: 0.000000
2023-10-19 10:46:37,489 epoch 6 - iter 3647/5212 - loss 0.23718572 - time (sec): 58.29 - samples/sec: 4445.74 - lr: 0.000014 - momentum: 0.000000
2023-10-19 10:46:45,775 epoch 6 - iter 4168/5212 - loss 0.23673427 - time (sec): 66.58 - samples/sec: 4422.59 - lr: 0.000014 - momentum: 0.000000
2023-10-19 10:46:53,971 epoch 6 - iter 4689/5212 - loss 0.23213792 - time (sec): 74.77 - samples/sec: 4423.57 - lr: 0.000014 - momentum: 0.000000
2023-10-19 10:47:02,844 epoch 6 - iter 5210/5212 - loss 0.23638178 - time (sec): 83.65 - samples/sec: 4391.69 - lr: 0.000013 - momentum: 0.000000
2023-10-19 10:47:02,878 ----------------------------------------------------------------------------------------------------
2023-10-19 10:47:02,879 EPOCH 6 done: loss 0.2364 - lr: 0.000013
2023-10-19 10:47:07,421 DEV : loss 0.1647791564464569 - f1-score (micro avg)  0.2693
2023-10-19 10:47:07,444 ----------------------------------------------------------------------------------------------------
2023-10-19 10:47:15,620 epoch 7 - iter 521/5212 - loss 0.23817423 - time (sec): 8.18 - samples/sec: 4509.93 - lr: 0.000013 - momentum: 0.000000
2023-10-19 10:47:23,915 epoch 7 - iter 1042/5212 - loss 0.22435065 - time (sec): 16.47 - samples/sec: 4529.78 - lr: 0.000013 - momentum: 0.000000
2023-10-19 10:47:32,101 epoch 7 - iter 1563/5212 - loss 0.22347997 - time (sec): 24.66 - samples/sec: 4503.56 - lr: 0.000012 - momentum: 0.000000
2023-10-19 10:47:40,302 epoch 7 - iter 2084/5212 - loss 0.22299657 - time (sec): 32.86 - samples/sec: 4508.96 - lr: 0.000012 - momentum: 0.000000
2023-10-19 10:47:49,223 epoch 7 - iter 2605/5212 - loss 0.21747021 - time (sec): 41.78 - samples/sec: 4483.66 - lr: 0.000012 - momentum: 0.000000
2023-10-19 10:47:57,646 epoch 7 - iter 3126/5212 - loss 0.21824678 - time (sec): 50.20 - samples/sec: 4446.54 - lr: 0.000011 - momentum: 0.000000
2023-10-19 10:48:05,716 epoch 7 - iter 3647/5212 - loss 0.22182997 - time (sec): 58.27 - samples/sec: 4432.18 - lr: 0.000011 - momentum: 0.000000
2023-10-19 10:48:14,327 epoch 7 - iter 4168/5212 - loss 0.22075907 - time (sec): 66.88 - samples/sec: 4401.35 - lr: 0.000011 - momentum: 0.000000
2023-10-19 10:48:22,791 epoch 7 - iter 4689/5212 - loss 0.22067660 - time (sec): 75.35 - samples/sec: 4403.88 - lr: 0.000010 - momentum: 0.000000
2023-10-19 10:48:31,053 epoch 7 - iter 5210/5212 - loss 0.22219262 - time (sec): 83.61 - samples/sec: 4391.66 - lr: 0.000010 - momentum: 0.000000
2023-10-19 10:48:31,096 ----------------------------------------------------------------------------------------------------
2023-10-19 10:48:31,096 EPOCH 7 done: loss 0.2220 - lr: 0.000010
2023-10-19 10:48:35,618 DEV : loss 0.16794627904891968 - f1-score (micro avg)  0.2714
2023-10-19 10:48:35,641 ----------------------------------------------------------------------------------------------------
2023-10-19 10:48:44,018 epoch 8 - iter 521/5212 - loss 0.24024885 - time (sec): 8.38 - samples/sec: 4188.92 - lr: 0.000010 - momentum: 0.000000
2023-10-19 10:48:52,244 epoch 8 - iter 1042/5212 - loss 0.23380355 - time (sec): 16.60 - samples/sec: 4239.48 - lr: 0.000009 - momentum: 0.000000
2023-10-19 10:49:00,438 epoch 8 - iter 1563/5212 - loss 0.22497629 - time (sec): 24.80 - samples/sec: 4319.11 - lr: 0.000009 - momentum: 0.000000
2023-10-19 10:49:08,803 epoch 8 - iter 2084/5212 - loss 0.23065970 - time (sec): 33.16 - samples/sec: 4388.00 - lr: 0.000009 - momentum: 0.000000
2023-10-19 10:49:17,008 epoch 8 - iter 2605/5212 - loss 0.22269701 - time (sec): 41.37 - samples/sec: 4419.51 - lr: 0.000008 - momentum: 0.000000
2023-10-19 10:49:25,407 epoch 8 - iter 3126/5212 - loss 0.21867285 - time (sec): 49.77 - samples/sec: 4421.06 - lr: 0.000008 - momentum: 0.000000
2023-10-19 10:49:33,743 epoch 8 - iter 3647/5212 - loss 0.21580111 - time (sec): 58.10 - samples/sec: 4448.90 - lr: 0.000008 - momentum: 0.000000
2023-10-19 10:49:42,116 epoch 8 - iter 4168/5212 - loss 0.21326174 - time (sec): 66.47 - samples/sec: 4465.53 - lr: 0.000007 - momentum: 0.000000
2023-10-19 10:49:50,650 epoch 8 - iter 4689/5212 - loss 0.21523254 - time (sec): 75.01 - samples/sec: 4435.87 - lr: 0.000007 - momentum: 0.000000
2023-10-19 10:49:58,898 epoch 8 - iter 5210/5212 - loss 0.21610124 - time (sec): 83.26 - samples/sec: 4412.87 - lr: 0.000007 - momentum: 0.000000
2023-10-19 10:49:58,930 ----------------------------------------------------------------------------------------------------
2023-10-19 10:49:58,930 EPOCH 8 done: loss 0.2161 - lr: 0.000007
2023-10-19 10:50:04,152 DEV : loss 0.17187514901161194 - f1-score (micro avg)  0.266
2023-10-19 10:50:04,179 ----------------------------------------------------------------------------------------------------
2023-10-19 10:50:12,398 epoch 9 - iter 521/5212 - loss 0.21708792 - time (sec): 8.22 - samples/sec: 4102.45 - lr: 0.000006 - momentum: 0.000000
2023-10-19 10:50:20,747 epoch 9 - iter 1042/5212 - loss 0.19390674 - time (sec): 16.57 - samples/sec: 4312.08 - lr: 0.000006 - momentum: 0.000000
2023-10-19 10:50:29,009 epoch 9 - iter 1563/5212 - loss 0.20054262 - time (sec): 24.83 - samples/sec: 4341.33 - lr: 0.000006 - momentum: 0.000000
2023-10-19 10:50:37,304 epoch 9 - iter 2084/5212 - loss 0.21128490 - time (sec): 33.12 - samples/sec: 4338.21 - lr: 0.000005 - momentum: 0.000000
2023-10-19 10:50:45,779 epoch 9 - iter 2605/5212 - loss 0.21144254 - time (sec): 41.60 - samples/sec: 4433.69 - lr: 0.000005 - momentum: 0.000000
2023-10-19 10:50:54,001 epoch 9 - iter 3126/5212 - loss 0.20955816 - time (sec): 49.82 - samples/sec: 4423.37 - lr: 0.000005 - momentum: 0.000000
2023-10-19 10:51:02,390 epoch 9 - iter 3647/5212 - loss 0.21385600 - time (sec): 58.21 - samples/sec: 4438.87 - lr: 0.000004 - momentum: 0.000000
2023-10-19 10:51:10,644 epoch 9 - iter 4168/5212 - loss 0.21026236 - time (sec): 66.46 - samples/sec: 4440.93 - lr: 0.000004 - momentum: 0.000000
2023-10-19 10:51:19,014 epoch 9 - iter 4689/5212 - loss 0.20931466 - time (sec): 74.83 - samples/sec: 4411.30 - lr: 0.000004 - momentum: 0.000000
2023-10-19 10:51:27,385 epoch 9 - iter 5210/5212 - loss 0.20947495 - time (sec): 83.20 - samples/sec: 4414.82 - lr: 0.000003 - momentum: 0.000000
2023-10-19 10:51:27,418 ----------------------------------------------------------------------------------------------------
2023-10-19 10:51:27,418 EPOCH 9 done: loss 0.2094 - lr: 0.000003
2023-10-19 10:51:32,597 DEV : loss 0.1816394329071045 - f1-score (micro avg)  0.272
2023-10-19 10:51:32,621 ----------------------------------------------------------------------------------------------------
2023-10-19 10:51:41,163 epoch 10 - iter 521/5212 - loss 0.20993504 - time (sec): 8.54 - samples/sec: 4199.80 - lr: 0.000003 - momentum: 0.000000
2023-10-19 10:51:49,336 epoch 10 - iter 1042/5212 - loss 0.19721566 - time (sec): 16.71 - samples/sec: 4408.14 - lr: 0.000003 - momentum: 0.000000
2023-10-19 10:51:57,596 epoch 10 - iter 1563/5212 - loss 0.19886392 - time (sec): 24.97 - samples/sec: 4399.09 - lr: 0.000002 - momentum: 0.000000
2023-10-19 10:52:06,090 epoch 10 - iter 2084/5212 - loss 0.20201347 - time (sec): 33.47 - samples/sec: 4376.06 - lr: 0.000002 - momentum: 0.000000
2023-10-19 10:52:14,589 epoch 10 - iter 2605/5212 - loss 0.20351706 - time (sec): 41.97 - samples/sec: 4365.97 - lr: 0.000002 - momentum: 0.000000
2023-10-19 10:52:23,017 epoch 10 - iter 3126/5212 - loss 0.20748962 - time (sec): 50.40 - samples/sec: 4427.54 - lr: 0.000001 - momentum: 0.000000
2023-10-19 10:52:31,397 epoch 10 - iter 3647/5212 - loss 0.20967361 - time (sec): 58.78 - samples/sec: 4432.91 - lr: 0.000001 - momentum: 0.000000
2023-10-19 10:52:39,724 epoch 10 - iter 4168/5212 - loss 0.20825590 - time (sec): 67.10 - samples/sec: 4426.18 - lr: 0.000001 - momentum: 0.000000
2023-10-19 10:52:48,049 epoch 10 - iter 4689/5212 - loss 0.20604718 - time (sec): 75.43 - samples/sec: 4423.79 - lr: 0.000000 - momentum: 0.000000
2023-10-19 10:52:56,230 epoch 10 - iter 5210/5212 - loss 0.20716771 - time (sec): 83.61 - samples/sec: 4391.22 - lr: 0.000000 - momentum: 0.000000
2023-10-19 10:52:56,272 ----------------------------------------------------------------------------------------------------
2023-10-19 10:52:56,272 EPOCH 10 done: loss 0.2072 - lr: 0.000000
2023-10-19 10:53:01,417 DEV : loss 0.17811782658100128 - f1-score (micro avg)  0.2638
2023-10-19 10:53:01,469 ----------------------------------------------------------------------------------------------------
2023-10-19 10:53:01,470 Loading model from best epoch ...
2023-10-19 10:53:01,547 SequenceTagger predicts: Dictionary with 17 tags: O, S-LOC, B-LOC, E-LOC, I-LOC, S-PER, B-PER, E-PER, I-PER, S-ORG, B-ORG, E-ORG, I-ORG, S-HumanProd, B-HumanProd, E-HumanProd, I-HumanProd
2023-10-19 10:53:07,781 
Results:
- F-score (micro) 0.299
- F-score (macro) 0.1455
- Accuracy 0.177

By class:
              precision    recall  f1-score   support

         LOC     0.4586    0.4605    0.4595      1214
         PER     0.1394    0.0718    0.0948       808
         ORG     0.0470    0.0198    0.0279       353
   HumanProd     0.0000    0.0000    0.0000        15

   micro avg     0.3498    0.2611    0.2990      2390
   macro avg     0.1612    0.1380    0.1455      2390
weighted avg     0.2870    0.2611    0.2696      2390

2023-10-19 10:53:07,782 ----------------------------------------------------------------------------------------------------