2023-10-19 23:42:06,059 ---------------------------------------------------------------------------------------------------- 2023-10-19 23:42:06,059 Model: "SequenceTagger( (embeddings): TransformerWordEmbeddings( (model): BertModel( (embeddings): BertEmbeddings( (word_embeddings): Embedding(32001, 128) (position_embeddings): Embedding(512, 128) (token_type_embeddings): Embedding(2, 128) (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) (encoder): BertEncoder( (layer): ModuleList( (0-1): 2 x BertLayer( (attention): BertAttention( (self): BertSelfAttention( (query): Linear(in_features=128, out_features=128, bias=True) (key): Linear(in_features=128, out_features=128, bias=True) (value): Linear(in_features=128, out_features=128, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) (output): BertSelfOutput( (dense): Linear(in_features=128, out_features=128, bias=True) (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (intermediate): BertIntermediate( (dense): Linear(in_features=128, out_features=512, bias=True) (intermediate_act_fn): GELUActivation() ) (output): BertOutput( (dense): Linear(in_features=512, out_features=128, bias=True) (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) ) ) (pooler): BertPooler( (dense): Linear(in_features=128, out_features=128, bias=True) (activation): Tanh() ) ) ) (locked_dropout): LockedDropout(p=0.5) (linear): Linear(in_features=128, out_features=17, bias=True) (loss_function): CrossEntropyLoss() )" 2023-10-19 23:42:06,059 ---------------------------------------------------------------------------------------------------- 2023-10-19 23:42:06,059 MultiCorpus: 1166 train + 165 dev + 415 test sentences - NER_HIPE_2022 Corpus: 1166 train + 165 dev + 415 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/newseye/fi/with_doc_seperator 2023-10-19 23:42:06,059 ---------------------------------------------------------------------------------------------------- 2023-10-19 23:42:06,059 Train: 1166 sentences 2023-10-19 23:42:06,059 (train_with_dev=False, train_with_test=False) 2023-10-19 23:42:06,059 ---------------------------------------------------------------------------------------------------- 2023-10-19 23:42:06,059 Training Params: 2023-10-19 23:42:06,059 - learning_rate: "3e-05" 2023-10-19 23:42:06,059 - mini_batch_size: "4" 2023-10-19 23:42:06,059 - max_epochs: "10" 2023-10-19 23:42:06,060 - shuffle: "True" 2023-10-19 23:42:06,060 ---------------------------------------------------------------------------------------------------- 2023-10-19 23:42:06,060 Plugins: 2023-10-19 23:42:06,060 - TensorboardLogger 2023-10-19 23:42:06,060 - LinearScheduler | warmup_fraction: '0.1' 2023-10-19 23:42:06,060 ---------------------------------------------------------------------------------------------------- 2023-10-19 23:42:06,060 Final evaluation on model from best epoch (best-model.pt) 2023-10-19 23:42:06,060 - metric: "('micro avg', 'f1-score')" 2023-10-19 23:42:06,060 ---------------------------------------------------------------------------------------------------- 2023-10-19 23:42:06,060 Computation: 2023-10-19 23:42:06,060 - compute on device: cuda:0 2023-10-19 23:42:06,060 - embedding storage: none 2023-10-19 23:42:06,060 ---------------------------------------------------------------------------------------------------- 2023-10-19 23:42:06,060 Model training base path: "hmbench-newseye/fi-dbmdz/bert-tiny-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1" 2023-10-19 23:42:06,060 ---------------------------------------------------------------------------------------------------- 2023-10-19 23:42:06,060 ---------------------------------------------------------------------------------------------------- 2023-10-19 23:42:06,060 Logging anything other than scalars to TensorBoard is currently not supported. 2023-10-19 23:42:06,967 epoch 1 - iter 29/292 - loss 3.08591664 - time (sec): 0.91 - samples/sec: 5239.80 - lr: 0.000003 - momentum: 0.000000 2023-10-19 23:42:07,454 epoch 1 - iter 58/292 - loss 3.08024881 - time (sec): 1.39 - samples/sec: 6420.54 - lr: 0.000006 - momentum: 0.000000 2023-10-19 23:42:07,977 epoch 1 - iter 87/292 - loss 3.05119373 - time (sec): 1.92 - samples/sec: 7148.76 - lr: 0.000009 - momentum: 0.000000 2023-10-19 23:42:08,526 epoch 1 - iter 116/292 - loss 3.00830650 - time (sec): 2.47 - samples/sec: 7672.61 - lr: 0.000012 - momentum: 0.000000 2023-10-19 23:42:09,042 epoch 1 - iter 145/292 - loss 2.82533115 - time (sec): 2.98 - samples/sec: 7772.64 - lr: 0.000015 - momentum: 0.000000 2023-10-19 23:42:09,539 epoch 1 - iter 174/292 - loss 2.68196572 - time (sec): 3.48 - samples/sec: 7733.92 - lr: 0.000018 - momentum: 0.000000 2023-10-19 23:42:10,050 epoch 1 - iter 203/292 - loss 2.53889030 - time (sec): 3.99 - samples/sec: 7571.16 - lr: 0.000021 - momentum: 0.000000 2023-10-19 23:42:10,589 epoch 1 - iter 232/292 - loss 2.30235004 - time (sec): 4.53 - samples/sec: 7780.95 - lr: 0.000024 - momentum: 0.000000 2023-10-19 23:42:11,108 epoch 1 - iter 261/292 - loss 2.13326537 - time (sec): 5.05 - samples/sec: 7826.92 - lr: 0.000027 - momentum: 0.000000 2023-10-19 23:42:11,639 epoch 1 - iter 290/292 - loss 1.97964118 - time (sec): 5.58 - samples/sec: 7947.31 - lr: 0.000030 - momentum: 0.000000 2023-10-19 23:42:11,666 ---------------------------------------------------------------------------------------------------- 2023-10-19 23:42:11,666 EPOCH 1 done: loss 1.9775 - lr: 0.000030 2023-10-19 23:42:12,081 DEV : loss 0.46280646324157715 - f1-score (micro avg) 0.0 2023-10-19 23:42:12,085 ---------------------------------------------------------------------------------------------------- 2023-10-19 23:42:12,612 epoch 2 - iter 29/292 - loss 0.75100566 - time (sec): 0.53 - samples/sec: 9942.53 - lr: 0.000030 - momentum: 0.000000 2023-10-19 23:42:13,156 epoch 2 - iter 58/292 - loss 0.79963907 - time (sec): 1.07 - samples/sec: 9250.93 - lr: 0.000029 - momentum: 0.000000 2023-10-19 23:42:13,658 epoch 2 - iter 87/292 - loss 0.77458000 - time (sec): 1.57 - samples/sec: 8957.69 - lr: 0.000029 - momentum: 0.000000 2023-10-19 23:42:14,177 epoch 2 - iter 116/292 - loss 0.73709213 - time (sec): 2.09 - samples/sec: 9063.02 - lr: 0.000029 - momentum: 0.000000 2023-10-19 23:42:14,696 epoch 2 - iter 145/292 - loss 0.73824341 - time (sec): 2.61 - samples/sec: 8719.67 - lr: 0.000028 - momentum: 0.000000 2023-10-19 23:42:15,239 epoch 2 - iter 174/292 - loss 0.70725517 - time (sec): 3.15 - samples/sec: 8521.16 - lr: 0.000028 - momentum: 0.000000 2023-10-19 23:42:15,758 epoch 2 - iter 203/292 - loss 0.69621852 - time (sec): 3.67 - samples/sec: 8545.85 - lr: 0.000028 - momentum: 0.000000 2023-10-19 23:42:16,275 epoch 2 - iter 232/292 - loss 0.68754116 - time (sec): 4.19 - samples/sec: 8578.64 - lr: 0.000027 - momentum: 0.000000 2023-10-19 23:42:16,722 epoch 2 - iter 261/292 - loss 0.67062185 - time (sec): 4.64 - samples/sec: 8662.35 - lr: 0.000027 - momentum: 0.000000 2023-10-19 23:42:17,188 epoch 2 - iter 290/292 - loss 0.65439760 - time (sec): 5.10 - samples/sec: 8685.95 - lr: 0.000027 - momentum: 0.000000 2023-10-19 23:42:17,214 ---------------------------------------------------------------------------------------------------- 2023-10-19 23:42:17,214 EPOCH 2 done: loss 0.6545 - lr: 0.000027 2023-10-19 23:42:17,832 DEV : loss 0.4219829738140106 - f1-score (micro avg) 0.0 2023-10-19 23:42:17,836 ---------------------------------------------------------------------------------------------------- 2023-10-19 23:42:18,310 epoch 3 - iter 29/292 - loss 0.49006854 - time (sec): 0.47 - samples/sec: 9074.56 - lr: 0.000026 - momentum: 0.000000 2023-10-19 23:42:18,847 epoch 3 - iter 58/292 - loss 0.73232854 - time (sec): 1.01 - samples/sec: 8510.41 - lr: 0.000026 - momentum: 0.000000 2023-10-19 23:42:19,353 epoch 3 - iter 87/292 - loss 0.68251336 - time (sec): 1.52 - samples/sec: 8519.91 - lr: 0.000026 - momentum: 0.000000 2023-10-19 23:42:19,875 epoch 3 - iter 116/292 - loss 0.63235067 - time (sec): 2.04 - samples/sec: 8668.90 - lr: 0.000025 - momentum: 0.000000 2023-10-19 23:42:20,382 epoch 3 - iter 145/292 - loss 0.62468572 - time (sec): 2.55 - samples/sec: 8392.58 - lr: 0.000025 - momentum: 0.000000 2023-10-19 23:42:20,935 epoch 3 - iter 174/292 - loss 0.62606584 - time (sec): 3.10 - samples/sec: 8613.21 - lr: 0.000025 - momentum: 0.000000 2023-10-19 23:42:21,480 epoch 3 - iter 203/292 - loss 0.60290014 - time (sec): 3.64 - samples/sec: 8616.36 - lr: 0.000024 - momentum: 0.000000 2023-10-19 23:42:22,003 epoch 3 - iter 232/292 - loss 0.59361057 - time (sec): 4.17 - samples/sec: 8458.53 - lr: 0.000024 - momentum: 0.000000 2023-10-19 23:42:22,517 epoch 3 - iter 261/292 - loss 0.58612670 - time (sec): 4.68 - samples/sec: 8481.25 - lr: 0.000024 - momentum: 0.000000 2023-10-19 23:42:23,030 epoch 3 - iter 290/292 - loss 0.57753323 - time (sec): 5.19 - samples/sec: 8521.11 - lr: 0.000023 - momentum: 0.000000 2023-10-19 23:42:23,060 ---------------------------------------------------------------------------------------------------- 2023-10-19 23:42:23,060 EPOCH 3 done: loss 0.5763 - lr: 0.000023 2023-10-19 23:42:23,827 DEV : loss 0.3529767692089081 - f1-score (micro avg) 0.0 2023-10-19 23:42:23,831 ---------------------------------------------------------------------------------------------------- 2023-10-19 23:42:24,353 epoch 4 - iter 29/292 - loss 0.49689288 - time (sec): 0.52 - samples/sec: 8422.11 - lr: 0.000023 - momentum: 0.000000 2023-10-19 23:42:24,894 epoch 4 - iter 58/292 - loss 0.48782282 - time (sec): 1.06 - samples/sec: 8283.51 - lr: 0.000023 - momentum: 0.000000 2023-10-19 23:42:25,397 epoch 4 - iter 87/292 - loss 0.47892406 - time (sec): 1.57 - samples/sec: 8598.67 - lr: 0.000022 - momentum: 0.000000 2023-10-19 23:42:25,913 epoch 4 - iter 116/292 - loss 0.47218105 - time (sec): 2.08 - samples/sec: 8481.60 - lr: 0.000022 - momentum: 0.000000 2023-10-19 23:42:26,418 epoch 4 - iter 145/292 - loss 0.47202192 - time (sec): 2.59 - samples/sec: 8533.59 - lr: 0.000022 - momentum: 0.000000 2023-10-19 23:42:26,959 epoch 4 - iter 174/292 - loss 0.49078431 - time (sec): 3.13 - samples/sec: 8760.33 - lr: 0.000021 - momentum: 0.000000 2023-10-19 23:42:27,471 epoch 4 - iter 203/292 - loss 0.49917888 - time (sec): 3.64 - samples/sec: 8606.24 - lr: 0.000021 - momentum: 0.000000 2023-10-19 23:42:27,985 epoch 4 - iter 232/292 - loss 0.49683508 - time (sec): 4.15 - samples/sec: 8581.77 - lr: 0.000021 - momentum: 0.000000 2023-10-19 23:42:28,526 epoch 4 - iter 261/292 - loss 0.49461759 - time (sec): 4.69 - samples/sec: 8607.84 - lr: 0.000020 - momentum: 0.000000 2023-10-19 23:42:29,018 epoch 4 - iter 290/292 - loss 0.48994028 - time (sec): 5.19 - samples/sec: 8493.63 - lr: 0.000020 - momentum: 0.000000 2023-10-19 23:42:29,053 ---------------------------------------------------------------------------------------------------- 2023-10-19 23:42:29,054 EPOCH 4 done: loss 0.4878 - lr: 0.000020 2023-10-19 23:42:29,684 DEV : loss 0.33182382583618164 - f1-score (micro avg) 0.0519 2023-10-19 23:42:29,688 saving best model 2023-10-19 23:42:29,718 ---------------------------------------------------------------------------------------------------- 2023-10-19 23:42:30,243 epoch 5 - iter 29/292 - loss 0.47860587 - time (sec): 0.52 - samples/sec: 8301.65 - lr: 0.000020 - momentum: 0.000000 2023-10-19 23:42:30,758 epoch 5 - iter 58/292 - loss 0.45421070 - time (sec): 1.04 - samples/sec: 8889.91 - lr: 0.000019 - momentum: 0.000000 2023-10-19 23:42:31,321 epoch 5 - iter 87/292 - loss 0.50017143 - time (sec): 1.60 - samples/sec: 9120.81 - lr: 0.000019 - momentum: 0.000000 2023-10-19 23:42:31,851 epoch 5 - iter 116/292 - loss 0.50574198 - time (sec): 2.13 - samples/sec: 8859.29 - lr: 0.000019 - momentum: 0.000000 2023-10-19 23:42:32,349 epoch 5 - iter 145/292 - loss 0.48939797 - time (sec): 2.63 - samples/sec: 8699.48 - lr: 0.000018 - momentum: 0.000000 2023-10-19 23:42:32,872 epoch 5 - iter 174/292 - loss 0.47205527 - time (sec): 3.15 - samples/sec: 8561.62 - lr: 0.000018 - momentum: 0.000000 2023-10-19 23:42:33,426 epoch 5 - iter 203/292 - loss 0.47253502 - time (sec): 3.71 - samples/sec: 8455.14 - lr: 0.000018 - momentum: 0.000000 2023-10-19 23:42:33,921 epoch 5 - iter 232/292 - loss 0.46611011 - time (sec): 4.20 - samples/sec: 8486.53 - lr: 0.000017 - momentum: 0.000000 2023-10-19 23:42:34,435 epoch 5 - iter 261/292 - loss 0.45700445 - time (sec): 4.72 - samples/sec: 8402.90 - lr: 0.000017 - momentum: 0.000000 2023-10-19 23:42:34,991 epoch 5 - iter 290/292 - loss 0.44717647 - time (sec): 5.27 - samples/sec: 8382.89 - lr: 0.000017 - momentum: 0.000000 2023-10-19 23:42:35,027 ---------------------------------------------------------------------------------------------------- 2023-10-19 23:42:35,027 EPOCH 5 done: loss 0.4469 - lr: 0.000017 2023-10-19 23:42:35,658 DEV : loss 0.329159677028656 - f1-score (micro avg) 0.11 2023-10-19 23:42:35,661 saving best model 2023-10-19 23:42:35,693 ---------------------------------------------------------------------------------------------------- 2023-10-19 23:42:36,237 epoch 6 - iter 29/292 - loss 0.45931813 - time (sec): 0.54 - samples/sec: 9314.72 - lr: 0.000016 - momentum: 0.000000 2023-10-19 23:42:36,754 epoch 6 - iter 58/292 - loss 0.42547849 - time (sec): 1.06 - samples/sec: 8689.77 - lr: 0.000016 - momentum: 0.000000 2023-10-19 23:42:37,317 epoch 6 - iter 87/292 - loss 0.47113410 - time (sec): 1.62 - samples/sec: 8916.09 - lr: 0.000016 - momentum: 0.000000 2023-10-19 23:42:37,839 epoch 6 - iter 116/292 - loss 0.46155777 - time (sec): 2.15 - samples/sec: 8628.72 - lr: 0.000015 - momentum: 0.000000 2023-10-19 23:42:38,402 epoch 6 - iter 145/292 - loss 0.45884388 - time (sec): 2.71 - samples/sec: 8457.57 - lr: 0.000015 - momentum: 0.000000 2023-10-19 23:42:38,917 epoch 6 - iter 174/292 - loss 0.44123585 - time (sec): 3.22 - samples/sec: 8597.19 - lr: 0.000015 - momentum: 0.000000 2023-10-19 23:42:39,456 epoch 6 - iter 203/292 - loss 0.42472976 - time (sec): 3.76 - samples/sec: 8436.29 - lr: 0.000014 - momentum: 0.000000 2023-10-19 23:42:39,973 epoch 6 - iter 232/292 - loss 0.42486810 - time (sec): 4.28 - samples/sec: 8330.37 - lr: 0.000014 - momentum: 0.000000 2023-10-19 23:42:40,492 epoch 6 - iter 261/292 - loss 0.42696152 - time (sec): 4.80 - samples/sec: 8374.98 - lr: 0.000014 - momentum: 0.000000 2023-10-19 23:42:40,995 epoch 6 - iter 290/292 - loss 0.42408929 - time (sec): 5.30 - samples/sec: 8364.21 - lr: 0.000013 - momentum: 0.000000 2023-10-19 23:42:41,020 ---------------------------------------------------------------------------------------------------- 2023-10-19 23:42:41,020 EPOCH 6 done: loss 0.4244 - lr: 0.000013 2023-10-19 23:42:41,649 DEV : loss 0.32003137469291687 - f1-score (micro avg) 0.152 2023-10-19 23:42:41,652 saving best model 2023-10-19 23:42:41,684 ---------------------------------------------------------------------------------------------------- 2023-10-19 23:42:42,226 epoch 7 - iter 29/292 - loss 0.37862602 - time (sec): 0.54 - samples/sec: 9870.25 - lr: 0.000013 - momentum: 0.000000 2023-10-19 23:42:42,716 epoch 7 - iter 58/292 - loss 0.40722645 - time (sec): 1.03 - samples/sec: 9014.41 - lr: 0.000013 - momentum: 0.000000 2023-10-19 23:42:43,225 epoch 7 - iter 87/292 - loss 0.40708103 - time (sec): 1.54 - samples/sec: 8485.94 - lr: 0.000012 - momentum: 0.000000 2023-10-19 23:42:43,749 epoch 7 - iter 116/292 - loss 0.38567811 - time (sec): 2.06 - samples/sec: 8628.47 - lr: 0.000012 - momentum: 0.000000 2023-10-19 23:42:44,255 epoch 7 - iter 145/292 - loss 0.38065430 - time (sec): 2.57 - samples/sec: 8677.84 - lr: 0.000012 - momentum: 0.000000 2023-10-19 23:42:44,729 epoch 7 - iter 174/292 - loss 0.39464854 - time (sec): 3.04 - samples/sec: 8592.58 - lr: 0.000011 - momentum: 0.000000 2023-10-19 23:42:45,199 epoch 7 - iter 203/292 - loss 0.39435703 - time (sec): 3.51 - samples/sec: 8462.62 - lr: 0.000011 - momentum: 0.000000 2023-10-19 23:42:45,716 epoch 7 - iter 232/292 - loss 0.41885136 - time (sec): 4.03 - samples/sec: 8568.32 - lr: 0.000011 - momentum: 0.000000 2023-10-19 23:42:46,250 epoch 7 - iter 261/292 - loss 0.40635836 - time (sec): 4.56 - samples/sec: 8629.52 - lr: 0.000010 - momentum: 0.000000 2023-10-19 23:42:46,796 epoch 7 - iter 290/292 - loss 0.40642788 - time (sec): 5.11 - samples/sec: 8648.25 - lr: 0.000010 - momentum: 0.000000 2023-10-19 23:42:46,827 ---------------------------------------------------------------------------------------------------- 2023-10-19 23:42:46,827 EPOCH 7 done: loss 0.4068 - lr: 0.000010 2023-10-19 23:42:47,470 DEV : loss 0.3101561963558197 - f1-score (micro avg) 0.1771 2023-10-19 23:42:47,474 saving best model 2023-10-19 23:42:47,505 ---------------------------------------------------------------------------------------------------- 2023-10-19 23:42:48,025 epoch 8 - iter 29/292 - loss 0.39692250 - time (sec): 0.52 - samples/sec: 8387.53 - lr: 0.000010 - momentum: 0.000000 2023-10-19 23:42:48,555 epoch 8 - iter 58/292 - loss 0.40211436 - time (sec): 1.05 - samples/sec: 8139.94 - lr: 0.000009 - momentum: 0.000000 2023-10-19 23:42:49,109 epoch 8 - iter 87/292 - loss 0.37946836 - time (sec): 1.60 - samples/sec: 8053.82 - lr: 0.000009 - momentum: 0.000000 2023-10-19 23:42:49,638 epoch 8 - iter 116/292 - loss 0.37436871 - time (sec): 2.13 - samples/sec: 8028.81 - lr: 0.000009 - momentum: 0.000000 2023-10-19 23:42:50,165 epoch 8 - iter 145/292 - loss 0.38320782 - time (sec): 2.66 - samples/sec: 8267.49 - lr: 0.000008 - momentum: 0.000000 2023-10-19 23:42:50,661 epoch 8 - iter 174/292 - loss 0.37239817 - time (sec): 3.16 - samples/sec: 8175.80 - lr: 0.000008 - momentum: 0.000000 2023-10-19 23:42:51,161 epoch 8 - iter 203/292 - loss 0.38670704 - time (sec): 3.66 - samples/sec: 8324.35 - lr: 0.000008 - momentum: 0.000000 2023-10-19 23:42:51,691 epoch 8 - iter 232/292 - loss 0.40156103 - time (sec): 4.19 - samples/sec: 8530.79 - lr: 0.000007 - momentum: 0.000000 2023-10-19 23:42:52,196 epoch 8 - iter 261/292 - loss 0.40115704 - time (sec): 4.69 - samples/sec: 8501.21 - lr: 0.000007 - momentum: 0.000000 2023-10-19 23:42:52,760 epoch 8 - iter 290/292 - loss 0.39705366 - time (sec): 5.25 - samples/sec: 8409.61 - lr: 0.000007 - momentum: 0.000000 2023-10-19 23:42:52,798 ---------------------------------------------------------------------------------------------------- 2023-10-19 23:42:52,799 EPOCH 8 done: loss 0.3972 - lr: 0.000007 2023-10-19 23:42:53,436 DEV : loss 0.3071003556251526 - f1-score (micro avg) 0.1917 2023-10-19 23:42:53,440 saving best model 2023-10-19 23:42:53,472 ---------------------------------------------------------------------------------------------------- 2023-10-19 23:42:53,940 epoch 9 - iter 29/292 - loss 0.29746546 - time (sec): 0.47 - samples/sec: 10070.18 - lr: 0.000006 - momentum: 0.000000 2023-10-19 23:42:54,409 epoch 9 - iter 58/292 - loss 0.35506392 - time (sec): 0.94 - samples/sec: 9508.66 - lr: 0.000006 - momentum: 0.000000 2023-10-19 23:42:54,886 epoch 9 - iter 87/292 - loss 0.35396730 - time (sec): 1.41 - samples/sec: 9629.12 - lr: 0.000006 - momentum: 0.000000 2023-10-19 23:42:55,379 epoch 9 - iter 116/292 - loss 0.36343270 - time (sec): 1.91 - samples/sec: 9125.81 - lr: 0.000005 - momentum: 0.000000 2023-10-19 23:42:55,864 epoch 9 - iter 145/292 - loss 0.36432377 - time (sec): 2.39 - samples/sec: 9111.20 - lr: 0.000005 - momentum: 0.000000 2023-10-19 23:42:56,392 epoch 9 - iter 174/292 - loss 0.36168872 - time (sec): 2.92 - samples/sec: 9146.51 - lr: 0.000005 - momentum: 0.000000 2023-10-19 23:42:56,978 epoch 9 - iter 203/292 - loss 0.36858999 - time (sec): 3.51 - samples/sec: 9023.83 - lr: 0.000004 - momentum: 0.000000 2023-10-19 23:42:57,502 epoch 9 - iter 232/292 - loss 0.37232179 - time (sec): 4.03 - samples/sec: 8917.92 - lr: 0.000004 - momentum: 0.000000 2023-10-19 23:42:58,036 epoch 9 - iter 261/292 - loss 0.38336928 - time (sec): 4.56 - samples/sec: 8912.37 - lr: 0.000004 - momentum: 0.000000 2023-10-19 23:42:58,512 epoch 9 - iter 290/292 - loss 0.38695651 - time (sec): 5.04 - samples/sec: 8793.24 - lr: 0.000003 - momentum: 0.000000 2023-10-19 23:42:58,539 ---------------------------------------------------------------------------------------------------- 2023-10-19 23:42:58,539 EPOCH 9 done: loss 0.3876 - lr: 0.000003 2023-10-19 23:42:59,308 DEV : loss 0.3116590082645416 - f1-score (micro avg) 0.1842 2023-10-19 23:42:59,312 ---------------------------------------------------------------------------------------------------- 2023-10-19 23:42:59,844 epoch 10 - iter 29/292 - loss 0.28754311 - time (sec): 0.53 - samples/sec: 8273.26 - lr: 0.000003 - momentum: 0.000000 2023-10-19 23:43:00,349 epoch 10 - iter 58/292 - loss 0.32926331 - time (sec): 1.04 - samples/sec: 8670.32 - lr: 0.000003 - momentum: 0.000000 2023-10-19 23:43:00,849 epoch 10 - iter 87/292 - loss 0.36191922 - time (sec): 1.54 - samples/sec: 8343.15 - lr: 0.000002 - momentum: 0.000000 2023-10-19 23:43:01,357 epoch 10 - iter 116/292 - loss 0.38321652 - time (sec): 2.04 - samples/sec: 8290.88 - lr: 0.000002 - momentum: 0.000000 2023-10-19 23:43:01,851 epoch 10 - iter 145/292 - loss 0.40004916 - time (sec): 2.54 - samples/sec: 8267.04 - lr: 0.000002 - momentum: 0.000000 2023-10-19 23:43:02,355 epoch 10 - iter 174/292 - loss 0.38579499 - time (sec): 3.04 - samples/sec: 8332.74 - lr: 0.000001 - momentum: 0.000000 2023-10-19 23:43:02,866 epoch 10 - iter 203/292 - loss 0.37548323 - time (sec): 3.55 - samples/sec: 8364.88 - lr: 0.000001 - momentum: 0.000000 2023-10-19 23:43:03,398 epoch 10 - iter 232/292 - loss 0.37611261 - time (sec): 4.08 - samples/sec: 8522.01 - lr: 0.000001 - momentum: 0.000000 2023-10-19 23:43:03,915 epoch 10 - iter 261/292 - loss 0.37076893 - time (sec): 4.60 - samples/sec: 8506.28 - lr: 0.000000 - momentum: 0.000000 2023-10-19 23:43:04,459 epoch 10 - iter 290/292 - loss 0.39272161 - time (sec): 5.15 - samples/sec: 8606.84 - lr: 0.000000 - momentum: 0.000000 2023-10-19 23:43:04,488 ---------------------------------------------------------------------------------------------------- 2023-10-19 23:43:04,488 EPOCH 10 done: loss 0.3923 - lr: 0.000000 2023-10-19 23:43:05,128 DEV : loss 0.3108135163784027 - f1-score (micro avg) 0.1927 2023-10-19 23:43:05,132 saving best model 2023-10-19 23:43:05,190 ---------------------------------------------------------------------------------------------------- 2023-10-19 23:43:05,190 Loading model from best epoch ... 2023-10-19 23:43:05,263 SequenceTagger predicts: Dictionary with 17 tags: O, S-LOC, B-LOC, E-LOC, I-LOC, S-PER, B-PER, E-PER, I-PER, S-ORG, B-ORG, E-ORG, I-ORG, S-HumanProd, B-HumanProd, E-HumanProd, I-HumanProd 2023-10-19 23:43:06,146 Results: - F-score (micro) 0.2063 - F-score (macro) 0.1109 - Accuracy 0.1194 By class: precision recall f1-score support PER 0.2196 0.1868 0.2019 348 LOC 0.2460 0.2375 0.2417 261 ORG 0.0000 0.0000 0.0000 52 HumanProd 0.0000 0.0000 0.0000 22 micro avg 0.2318 0.1859 0.2063 683 macro avg 0.1164 0.1061 0.1109 683 weighted avg 0.2059 0.1859 0.1952 683 2023-10-19 23:43:06,146 ----------------------------------------------------------------------------------------------------