File size: 24,062 Bytes
17984cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
2023-10-25 14:22:05,423 ----------------------------------------------------------------------------------------------------
2023-10-25 14:22:05,424 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(64001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-11): 12 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=768, out_features=768, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=17, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-25 14:22:05,424 ----------------------------------------------------------------------------------------------------
2023-10-25 14:22:05,424 MultiCorpus: 7142 train + 698 dev + 2570 test sentences
 - NER_HIPE_2022 Corpus: 7142 train + 698 dev + 2570 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/newseye/fr/with_doc_seperator
2023-10-25 14:22:05,424 ----------------------------------------------------------------------------------------------------
2023-10-25 14:22:05,424 Train:  7142 sentences
2023-10-25 14:22:05,424         (train_with_dev=False, train_with_test=False)
2023-10-25 14:22:05,424 ----------------------------------------------------------------------------------------------------
2023-10-25 14:22:05,424 Training Params:
2023-10-25 14:22:05,425  - learning_rate: "5e-05" 
2023-10-25 14:22:05,425  - mini_batch_size: "8"
2023-10-25 14:22:05,425  - max_epochs: "10"
2023-10-25 14:22:05,425  - shuffle: "True"
2023-10-25 14:22:05,425 ----------------------------------------------------------------------------------------------------
2023-10-25 14:22:05,425 Plugins:
2023-10-25 14:22:05,425  - TensorboardLogger
2023-10-25 14:22:05,425  - LinearScheduler | warmup_fraction: '0.1'
2023-10-25 14:22:05,425 ----------------------------------------------------------------------------------------------------
2023-10-25 14:22:05,425 Final evaluation on model from best epoch (best-model.pt)
2023-10-25 14:22:05,425  - metric: "('micro avg', 'f1-score')"
2023-10-25 14:22:05,425 ----------------------------------------------------------------------------------------------------
2023-10-25 14:22:05,425 Computation:
2023-10-25 14:22:05,425  - compute on device: cuda:0
2023-10-25 14:22:05,425  - embedding storage: none
2023-10-25 14:22:05,425 ----------------------------------------------------------------------------------------------------
2023-10-25 14:22:05,425 Model training base path: "hmbench-newseye/fr-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1"
2023-10-25 14:22:05,425 ----------------------------------------------------------------------------------------------------
2023-10-25 14:22:05,425 ----------------------------------------------------------------------------------------------------
2023-10-25 14:22:05,425 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-25 14:22:11,296 epoch 1 - iter 89/893 - loss 2.22174821 - time (sec): 5.87 - samples/sec: 4255.73 - lr: 0.000005 - momentum: 0.000000
2023-10-25 14:22:17,176 epoch 1 - iter 178/893 - loss 1.34900675 - time (sec): 11.75 - samples/sec: 4297.23 - lr: 0.000010 - momentum: 0.000000
2023-10-25 14:22:23,077 epoch 1 - iter 267/893 - loss 1.01310745 - time (sec): 17.65 - samples/sec: 4246.13 - lr: 0.000015 - momentum: 0.000000
2023-10-25 14:22:28,941 epoch 1 - iter 356/893 - loss 0.81673971 - time (sec): 23.52 - samples/sec: 4266.25 - lr: 0.000020 - momentum: 0.000000
2023-10-25 14:22:34,652 epoch 1 - iter 445/893 - loss 0.69153729 - time (sec): 29.23 - samples/sec: 4280.94 - lr: 0.000025 - momentum: 0.000000
2023-10-25 14:22:40,228 epoch 1 - iter 534/893 - loss 0.60855944 - time (sec): 34.80 - samples/sec: 4283.75 - lr: 0.000030 - momentum: 0.000000
2023-10-25 14:22:46,157 epoch 1 - iter 623/893 - loss 0.53908676 - time (sec): 40.73 - samples/sec: 4303.65 - lr: 0.000035 - momentum: 0.000000
2023-10-25 14:22:51,797 epoch 1 - iter 712/893 - loss 0.49305012 - time (sec): 46.37 - samples/sec: 4290.84 - lr: 0.000040 - momentum: 0.000000
2023-10-25 14:22:57,456 epoch 1 - iter 801/893 - loss 0.45348166 - time (sec): 52.03 - samples/sec: 4296.11 - lr: 0.000045 - momentum: 0.000000
2023-10-25 14:23:03,344 epoch 1 - iter 890/893 - loss 0.42527446 - time (sec): 57.92 - samples/sec: 4279.37 - lr: 0.000050 - momentum: 0.000000
2023-10-25 14:23:03,553 ----------------------------------------------------------------------------------------------------
2023-10-25 14:23:03,554 EPOCH 1 done: loss 0.4241 - lr: 0.000050
2023-10-25 14:23:07,042 DEV : loss 0.10224700719118118 - f1-score (micro avg)  0.7363
2023-10-25 14:23:07,064 saving best model
2023-10-25 14:23:07,584 ----------------------------------------------------------------------------------------------------
2023-10-25 14:23:13,537 epoch 2 - iter 89/893 - loss 0.10807083 - time (sec): 5.95 - samples/sec: 4146.32 - lr: 0.000049 - momentum: 0.000000
2023-10-25 14:23:19,506 epoch 2 - iter 178/893 - loss 0.10717817 - time (sec): 11.92 - samples/sec: 4148.68 - lr: 0.000049 - momentum: 0.000000
2023-10-25 14:23:25,279 epoch 2 - iter 267/893 - loss 0.10936825 - time (sec): 17.69 - samples/sec: 4151.97 - lr: 0.000048 - momentum: 0.000000
2023-10-25 14:23:31,126 epoch 2 - iter 356/893 - loss 0.11237855 - time (sec): 23.54 - samples/sec: 4166.50 - lr: 0.000048 - momentum: 0.000000
2023-10-25 14:23:36,586 epoch 2 - iter 445/893 - loss 0.10585519 - time (sec): 29.00 - samples/sec: 4220.66 - lr: 0.000047 - momentum: 0.000000
2023-10-25 14:23:42,078 epoch 2 - iter 534/893 - loss 0.10593438 - time (sec): 34.49 - samples/sec: 4248.78 - lr: 0.000047 - momentum: 0.000000
2023-10-25 14:23:47,781 epoch 2 - iter 623/893 - loss 0.10798060 - time (sec): 40.20 - samples/sec: 4281.71 - lr: 0.000046 - momentum: 0.000000
2023-10-25 14:23:53,567 epoch 2 - iter 712/893 - loss 0.10704577 - time (sec): 45.98 - samples/sec: 4307.87 - lr: 0.000046 - momentum: 0.000000
2023-10-25 14:23:59,120 epoch 2 - iter 801/893 - loss 0.10429214 - time (sec): 51.53 - samples/sec: 4347.28 - lr: 0.000045 - momentum: 0.000000
2023-10-25 14:24:04,739 epoch 2 - iter 890/893 - loss 0.10359464 - time (sec): 57.15 - samples/sec: 4337.39 - lr: 0.000044 - momentum: 0.000000
2023-10-25 14:24:04,955 ----------------------------------------------------------------------------------------------------
2023-10-25 14:24:04,955 EPOCH 2 done: loss 0.1033 - lr: 0.000044
2023-10-25 14:24:10,135 DEV : loss 0.0969092845916748 - f1-score (micro avg)  0.7786
2023-10-25 14:24:10,157 saving best model
2023-10-25 14:24:10,855 ----------------------------------------------------------------------------------------------------
2023-10-25 14:24:16,400 epoch 3 - iter 89/893 - loss 0.05486912 - time (sec): 5.54 - samples/sec: 4434.09 - lr: 0.000044 - momentum: 0.000000
2023-10-25 14:24:22,119 epoch 3 - iter 178/893 - loss 0.06296271 - time (sec): 11.26 - samples/sec: 4548.70 - lr: 0.000043 - momentum: 0.000000
2023-10-25 14:24:27,693 epoch 3 - iter 267/893 - loss 0.06237710 - time (sec): 16.83 - samples/sec: 4480.75 - lr: 0.000043 - momentum: 0.000000
2023-10-25 14:24:33,190 epoch 3 - iter 356/893 - loss 0.07078572 - time (sec): 22.33 - samples/sec: 4456.89 - lr: 0.000042 - momentum: 0.000000
2023-10-25 14:24:38,702 epoch 3 - iter 445/893 - loss 0.06966703 - time (sec): 27.84 - samples/sec: 4421.33 - lr: 0.000042 - momentum: 0.000000
2023-10-25 14:24:44,432 epoch 3 - iter 534/893 - loss 0.06853292 - time (sec): 33.57 - samples/sec: 4407.07 - lr: 0.000041 - momentum: 0.000000
2023-10-25 14:24:50,191 epoch 3 - iter 623/893 - loss 0.06693004 - time (sec): 39.33 - samples/sec: 4415.91 - lr: 0.000041 - momentum: 0.000000
2023-10-25 14:24:55,886 epoch 3 - iter 712/893 - loss 0.06730109 - time (sec): 45.03 - samples/sec: 4413.01 - lr: 0.000040 - momentum: 0.000000
2023-10-25 14:25:01,340 epoch 3 - iter 801/893 - loss 0.06610240 - time (sec): 50.48 - samples/sec: 4414.05 - lr: 0.000039 - momentum: 0.000000
2023-10-25 14:25:06,891 epoch 3 - iter 890/893 - loss 0.06743181 - time (sec): 56.03 - samples/sec: 4428.50 - lr: 0.000039 - momentum: 0.000000
2023-10-25 14:25:07,061 ----------------------------------------------------------------------------------------------------
2023-10-25 14:25:07,061 EPOCH 3 done: loss 0.0674 - lr: 0.000039
2023-10-25 14:25:10,865 DEV : loss 0.11728406697511673 - f1-score (micro avg)  0.7507
2023-10-25 14:25:10,887 ----------------------------------------------------------------------------------------------------
2023-10-25 14:25:16,941 epoch 4 - iter 89/893 - loss 0.05172042 - time (sec): 6.05 - samples/sec: 4265.61 - lr: 0.000038 - momentum: 0.000000
2023-10-25 14:25:22,824 epoch 4 - iter 178/893 - loss 0.04890968 - time (sec): 11.93 - samples/sec: 4188.03 - lr: 0.000038 - momentum: 0.000000
2023-10-25 14:25:28,627 epoch 4 - iter 267/893 - loss 0.04835057 - time (sec): 17.74 - samples/sec: 4153.56 - lr: 0.000037 - momentum: 0.000000
2023-10-25 14:25:34,625 epoch 4 - iter 356/893 - loss 0.04648503 - time (sec): 23.74 - samples/sec: 4206.05 - lr: 0.000037 - momentum: 0.000000
2023-10-25 14:25:41,203 epoch 4 - iter 445/893 - loss 0.04728395 - time (sec): 30.31 - samples/sec: 4135.62 - lr: 0.000036 - momentum: 0.000000
2023-10-25 14:25:46,943 epoch 4 - iter 534/893 - loss 0.04862880 - time (sec): 36.05 - samples/sec: 4139.07 - lr: 0.000036 - momentum: 0.000000
2023-10-25 14:25:52,737 epoch 4 - iter 623/893 - loss 0.04803766 - time (sec): 41.85 - samples/sec: 4149.38 - lr: 0.000035 - momentum: 0.000000
2023-10-25 14:25:58,381 epoch 4 - iter 712/893 - loss 0.04864147 - time (sec): 47.49 - samples/sec: 4175.34 - lr: 0.000034 - momentum: 0.000000
2023-10-25 14:26:04,318 epoch 4 - iter 801/893 - loss 0.04871377 - time (sec): 53.43 - samples/sec: 4193.31 - lr: 0.000034 - momentum: 0.000000
2023-10-25 14:26:09,795 epoch 4 - iter 890/893 - loss 0.04850206 - time (sec): 58.91 - samples/sec: 4210.00 - lr: 0.000033 - momentum: 0.000000
2023-10-25 14:26:09,973 ----------------------------------------------------------------------------------------------------
2023-10-25 14:26:09,973 EPOCH 4 done: loss 0.0486 - lr: 0.000033
2023-10-25 14:26:14,041 DEV : loss 0.15373246371746063 - f1-score (micro avg)  0.7653
2023-10-25 14:26:14,065 ----------------------------------------------------------------------------------------------------
2023-10-25 14:26:20,047 epoch 5 - iter 89/893 - loss 0.03855375 - time (sec): 5.98 - samples/sec: 4417.22 - lr: 0.000033 - momentum: 0.000000
2023-10-25 14:26:25,827 epoch 5 - iter 178/893 - loss 0.04024206 - time (sec): 11.76 - samples/sec: 4380.57 - lr: 0.000032 - momentum: 0.000000
2023-10-25 14:26:31,615 epoch 5 - iter 267/893 - loss 0.03624782 - time (sec): 17.55 - samples/sec: 4351.23 - lr: 0.000032 - momentum: 0.000000
2023-10-25 14:26:37,230 epoch 5 - iter 356/893 - loss 0.03803371 - time (sec): 23.16 - samples/sec: 4321.77 - lr: 0.000031 - momentum: 0.000000
2023-10-25 14:26:42,808 epoch 5 - iter 445/893 - loss 0.03757448 - time (sec): 28.74 - samples/sec: 4285.27 - lr: 0.000031 - momentum: 0.000000
2023-10-25 14:26:48,363 epoch 5 - iter 534/893 - loss 0.03668820 - time (sec): 34.30 - samples/sec: 4293.91 - lr: 0.000030 - momentum: 0.000000
2023-10-25 14:26:53,894 epoch 5 - iter 623/893 - loss 0.03705404 - time (sec): 39.83 - samples/sec: 4274.67 - lr: 0.000029 - momentum: 0.000000
2023-10-25 14:26:59,729 epoch 5 - iter 712/893 - loss 0.03634319 - time (sec): 45.66 - samples/sec: 4325.05 - lr: 0.000029 - momentum: 0.000000
2023-10-25 14:27:05,488 epoch 5 - iter 801/893 - loss 0.03547607 - time (sec): 51.42 - samples/sec: 4340.40 - lr: 0.000028 - momentum: 0.000000
2023-10-25 14:27:10,939 epoch 5 - iter 890/893 - loss 0.03563294 - time (sec): 56.87 - samples/sec: 4360.64 - lr: 0.000028 - momentum: 0.000000
2023-10-25 14:27:11,109 ----------------------------------------------------------------------------------------------------
2023-10-25 14:27:11,109 EPOCH 5 done: loss 0.0355 - lr: 0.000028
2023-10-25 14:27:15,806 DEV : loss 0.16320814192295074 - f1-score (micro avg)  0.7874
2023-10-25 14:27:15,826 saving best model
2023-10-25 14:27:16,529 ----------------------------------------------------------------------------------------------------
2023-10-25 14:27:22,218 epoch 6 - iter 89/893 - loss 0.02617113 - time (sec): 5.69 - samples/sec: 4700.94 - lr: 0.000027 - momentum: 0.000000
2023-10-25 14:27:28,467 epoch 6 - iter 178/893 - loss 0.02520431 - time (sec): 11.94 - samples/sec: 4332.41 - lr: 0.000027 - momentum: 0.000000
2023-10-25 14:27:33,984 epoch 6 - iter 267/893 - loss 0.02638010 - time (sec): 17.45 - samples/sec: 4320.59 - lr: 0.000026 - momentum: 0.000000
2023-10-25 14:27:39,878 epoch 6 - iter 356/893 - loss 0.02643239 - time (sec): 23.35 - samples/sec: 4349.87 - lr: 0.000026 - momentum: 0.000000
2023-10-25 14:27:45,656 epoch 6 - iter 445/893 - loss 0.02697284 - time (sec): 29.13 - samples/sec: 4332.53 - lr: 0.000025 - momentum: 0.000000
2023-10-25 14:27:51,208 epoch 6 - iter 534/893 - loss 0.02717458 - time (sec): 34.68 - samples/sec: 4355.89 - lr: 0.000024 - momentum: 0.000000
2023-10-25 14:27:56,893 epoch 6 - iter 623/893 - loss 0.02638170 - time (sec): 40.36 - samples/sec: 4340.97 - lr: 0.000024 - momentum: 0.000000
2023-10-25 14:28:02,464 epoch 6 - iter 712/893 - loss 0.02646998 - time (sec): 45.93 - samples/sec: 4345.70 - lr: 0.000023 - momentum: 0.000000
2023-10-25 14:28:08,304 epoch 6 - iter 801/893 - loss 0.02574741 - time (sec): 51.77 - samples/sec: 4344.49 - lr: 0.000023 - momentum: 0.000000
2023-10-25 14:28:13,959 epoch 6 - iter 890/893 - loss 0.02590536 - time (sec): 57.43 - samples/sec: 4318.36 - lr: 0.000022 - momentum: 0.000000
2023-10-25 14:28:14,125 ----------------------------------------------------------------------------------------------------
2023-10-25 14:28:14,126 EPOCH 6 done: loss 0.0259 - lr: 0.000022
2023-10-25 14:28:17,933 DEV : loss 0.18096403777599335 - f1-score (micro avg)  0.7885
2023-10-25 14:28:17,953 saving best model
2023-10-25 14:28:18,694 ----------------------------------------------------------------------------------------------------
2023-10-25 14:28:25,439 epoch 7 - iter 89/893 - loss 0.01678159 - time (sec): 6.74 - samples/sec: 3409.22 - lr: 0.000022 - momentum: 0.000000
2023-10-25 14:28:31,190 epoch 7 - iter 178/893 - loss 0.02086138 - time (sec): 12.49 - samples/sec: 3832.17 - lr: 0.000021 - momentum: 0.000000
2023-10-25 14:28:37,291 epoch 7 - iter 267/893 - loss 0.02080217 - time (sec): 18.59 - samples/sec: 4067.89 - lr: 0.000021 - momentum: 0.000000
2023-10-25 14:28:43,102 epoch 7 - iter 356/893 - loss 0.02143983 - time (sec): 24.40 - samples/sec: 4179.14 - lr: 0.000020 - momentum: 0.000000
2023-10-25 14:28:48,654 epoch 7 - iter 445/893 - loss 0.02119625 - time (sec): 29.96 - samples/sec: 4154.44 - lr: 0.000019 - momentum: 0.000000
2023-10-25 14:28:54,735 epoch 7 - iter 534/893 - loss 0.02007361 - time (sec): 36.04 - samples/sec: 4119.27 - lr: 0.000019 - momentum: 0.000000
2023-10-25 14:29:00,403 epoch 7 - iter 623/893 - loss 0.02020608 - time (sec): 41.71 - samples/sec: 4157.17 - lr: 0.000018 - momentum: 0.000000
2023-10-25 14:29:06,389 epoch 7 - iter 712/893 - loss 0.02032914 - time (sec): 47.69 - samples/sec: 4157.75 - lr: 0.000018 - momentum: 0.000000
2023-10-25 14:29:12,245 epoch 7 - iter 801/893 - loss 0.02130873 - time (sec): 53.55 - samples/sec: 4154.56 - lr: 0.000017 - momentum: 0.000000
2023-10-25 14:29:18,268 epoch 7 - iter 890/893 - loss 0.02140375 - time (sec): 59.57 - samples/sec: 4164.21 - lr: 0.000017 - momentum: 0.000000
2023-10-25 14:29:18,452 ----------------------------------------------------------------------------------------------------
2023-10-25 14:29:18,452 EPOCH 7 done: loss 0.0214 - lr: 0.000017
2023-10-25 14:29:22,302 DEV : loss 0.19584135711193085 - f1-score (micro avg)  0.7874
2023-10-25 14:29:22,325 ----------------------------------------------------------------------------------------------------
2023-10-25 14:29:28,254 epoch 8 - iter 89/893 - loss 0.01269647 - time (sec): 5.93 - samples/sec: 4175.01 - lr: 0.000016 - momentum: 0.000000
2023-10-25 14:29:34,170 epoch 8 - iter 178/893 - loss 0.01103982 - time (sec): 11.84 - samples/sec: 4330.76 - lr: 0.000016 - momentum: 0.000000
2023-10-25 14:29:40,172 epoch 8 - iter 267/893 - loss 0.01056955 - time (sec): 17.84 - samples/sec: 4320.95 - lr: 0.000015 - momentum: 0.000000
2023-10-25 14:29:46,086 epoch 8 - iter 356/893 - loss 0.01165606 - time (sec): 23.76 - samples/sec: 4333.99 - lr: 0.000014 - momentum: 0.000000
2023-10-25 14:29:51,817 epoch 8 - iter 445/893 - loss 0.01217482 - time (sec): 29.49 - samples/sec: 4280.96 - lr: 0.000014 - momentum: 0.000000
2023-10-25 14:29:57,619 epoch 8 - iter 534/893 - loss 0.01360158 - time (sec): 35.29 - samples/sec: 4255.30 - lr: 0.000013 - momentum: 0.000000
2023-10-25 14:30:03,211 epoch 8 - iter 623/893 - loss 0.01358451 - time (sec): 40.88 - samples/sec: 4280.98 - lr: 0.000013 - momentum: 0.000000
2023-10-25 14:30:09,010 epoch 8 - iter 712/893 - loss 0.01326304 - time (sec): 46.68 - samples/sec: 4279.43 - lr: 0.000012 - momentum: 0.000000
2023-10-25 14:30:14,815 epoch 8 - iter 801/893 - loss 0.01363656 - time (sec): 52.49 - samples/sec: 4280.60 - lr: 0.000012 - momentum: 0.000000
2023-10-25 14:30:20,749 epoch 8 - iter 890/893 - loss 0.01344285 - time (sec): 58.42 - samples/sec: 4244.81 - lr: 0.000011 - momentum: 0.000000
2023-10-25 14:30:20,929 ----------------------------------------------------------------------------------------------------
2023-10-25 14:30:20,929 EPOCH 8 done: loss 0.0134 - lr: 0.000011
2023-10-25 14:30:26,071 DEV : loss 0.21516965329647064 - f1-score (micro avg)  0.796
2023-10-25 14:30:26,096 saving best model
2023-10-25 14:30:26,883 ----------------------------------------------------------------------------------------------------
2023-10-25 14:30:32,597 epoch 9 - iter 89/893 - loss 0.01268252 - time (sec): 5.71 - samples/sec: 4284.31 - lr: 0.000011 - momentum: 0.000000
2023-10-25 14:30:38,584 epoch 9 - iter 178/893 - loss 0.01397325 - time (sec): 11.70 - samples/sec: 4298.37 - lr: 0.000010 - momentum: 0.000000
2023-10-25 14:30:44,380 epoch 9 - iter 267/893 - loss 0.01243272 - time (sec): 17.49 - samples/sec: 4354.73 - lr: 0.000009 - momentum: 0.000000
2023-10-25 14:30:49,932 epoch 9 - iter 356/893 - loss 0.01305437 - time (sec): 23.05 - samples/sec: 4343.10 - lr: 0.000009 - momentum: 0.000000
2023-10-25 14:30:55,731 epoch 9 - iter 445/893 - loss 0.01171325 - time (sec): 28.85 - samples/sec: 4364.70 - lr: 0.000008 - momentum: 0.000000
2023-10-25 14:31:01,450 epoch 9 - iter 534/893 - loss 0.01082927 - time (sec): 34.56 - samples/sec: 4348.58 - lr: 0.000008 - momentum: 0.000000
2023-10-25 14:31:07,263 epoch 9 - iter 623/893 - loss 0.01010485 - time (sec): 40.38 - samples/sec: 4345.62 - lr: 0.000007 - momentum: 0.000000
2023-10-25 14:31:12,771 epoch 9 - iter 712/893 - loss 0.01004408 - time (sec): 45.88 - samples/sec: 4345.42 - lr: 0.000007 - momentum: 0.000000
2023-10-25 14:31:18,573 epoch 9 - iter 801/893 - loss 0.01006474 - time (sec): 51.69 - samples/sec: 4340.94 - lr: 0.000006 - momentum: 0.000000
2023-10-25 14:31:24,256 epoch 9 - iter 890/893 - loss 0.01007528 - time (sec): 57.37 - samples/sec: 4323.30 - lr: 0.000006 - momentum: 0.000000
2023-10-25 14:31:24,441 ----------------------------------------------------------------------------------------------------
2023-10-25 14:31:24,441 EPOCH 9 done: loss 0.0101 - lr: 0.000006
2023-10-25 14:31:29,063 DEV : loss 0.23022107779979706 - f1-score (micro avg)  0.7853
2023-10-25 14:31:29,084 ----------------------------------------------------------------------------------------------------
2023-10-25 14:31:34,994 epoch 10 - iter 89/893 - loss 0.00710690 - time (sec): 5.91 - samples/sec: 4371.85 - lr: 0.000005 - momentum: 0.000000
2023-10-25 14:31:40,814 epoch 10 - iter 178/893 - loss 0.00583517 - time (sec): 11.73 - samples/sec: 4378.00 - lr: 0.000004 - momentum: 0.000000
2023-10-25 14:31:46,500 epoch 10 - iter 267/893 - loss 0.00596312 - time (sec): 17.41 - samples/sec: 4319.07 - lr: 0.000004 - momentum: 0.000000
2023-10-25 14:31:52,284 epoch 10 - iter 356/893 - loss 0.00716220 - time (sec): 23.20 - samples/sec: 4331.80 - lr: 0.000003 - momentum: 0.000000
2023-10-25 14:31:57,828 epoch 10 - iter 445/893 - loss 0.00782994 - time (sec): 28.74 - samples/sec: 4317.08 - lr: 0.000003 - momentum: 0.000000
2023-10-25 14:32:03,404 epoch 10 - iter 534/893 - loss 0.00818274 - time (sec): 34.32 - samples/sec: 4315.55 - lr: 0.000002 - momentum: 0.000000
2023-10-25 14:32:09,212 epoch 10 - iter 623/893 - loss 0.00842830 - time (sec): 40.13 - samples/sec: 4322.39 - lr: 0.000002 - momentum: 0.000000
2023-10-25 14:32:15,164 epoch 10 - iter 712/893 - loss 0.00783075 - time (sec): 46.08 - samples/sec: 4317.21 - lr: 0.000001 - momentum: 0.000000
2023-10-25 14:32:20,786 epoch 10 - iter 801/893 - loss 0.00742591 - time (sec): 51.70 - samples/sec: 4318.44 - lr: 0.000001 - momentum: 0.000000
2023-10-25 14:32:26,431 epoch 10 - iter 890/893 - loss 0.00733109 - time (sec): 57.35 - samples/sec: 4320.96 - lr: 0.000000 - momentum: 0.000000
2023-10-25 14:32:26,641 ----------------------------------------------------------------------------------------------------
2023-10-25 14:32:26,641 EPOCH 10 done: loss 0.0073 - lr: 0.000000
2023-10-25 14:32:30,523 DEV : loss 0.2292526513338089 - f1-score (micro avg)  0.7891
2023-10-25 14:32:31,069 ----------------------------------------------------------------------------------------------------
2023-10-25 14:32:31,071 Loading model from best epoch ...
2023-10-25 14:32:33,012 SequenceTagger predicts: Dictionary with 17 tags: O, S-PER, B-PER, E-PER, I-PER, S-LOC, B-LOC, E-LOC, I-LOC, S-ORG, B-ORG, E-ORG, I-ORG, S-HumanProd, B-HumanProd, E-HumanProd, I-HumanProd
2023-10-25 14:32:45,073 
Results:
- F-score (micro) 0.6915
- F-score (macro) 0.6191
- Accuracy 0.5445

By class:
              precision    recall  f1-score   support

         LOC     0.7139    0.6767    0.6948      1095
         PER     0.7722    0.7737    0.7730      1012
         ORG     0.4444    0.5602    0.4957       357
   HumanProd     0.4444    0.6061    0.5128        33

   micro avg     0.6847    0.6984    0.6915      2497
   macro avg     0.5937    0.6542    0.6191      2497
weighted avg     0.6954    0.6984    0.6956      2497

2023-10-25 14:32:45,073 ----------------------------------------------------------------------------------------------------