File size: 24,224 Bytes
a508f10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
2023-10-20 09:06:35,409 ----------------------------------------------------------------------------------------------------
2023-10-20 09:06:35,409 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(32001, 128)
        (position_embeddings): Embedding(512, 128)
        (token_type_embeddings): Embedding(2, 128)
        (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-1): 2 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=128, out_features=128, bias=True)
                (key): Linear(in_features=128, out_features=128, bias=True)
                (value): Linear(in_features=128, out_features=128, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=128, out_features=128, bias=True)
                (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=128, out_features=512, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=512, out_features=128, bias=True)
              (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=128, out_features=128, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=128, out_features=13, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-20 09:06:35,410 ----------------------------------------------------------------------------------------------------
2023-10-20 09:06:35,410 MultiCorpus: 6183 train + 680 dev + 2113 test sentences
 - NER_HIPE_2022 Corpus: 6183 train + 680 dev + 2113 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/topres19th/en/with_doc_seperator
2023-10-20 09:06:35,410 ----------------------------------------------------------------------------------------------------
2023-10-20 09:06:35,410 Train:  6183 sentences
2023-10-20 09:06:35,410         (train_with_dev=False, train_with_test=False)
2023-10-20 09:06:35,410 ----------------------------------------------------------------------------------------------------
2023-10-20 09:06:35,410 Training Params:
2023-10-20 09:06:35,410  - learning_rate: "3e-05" 
2023-10-20 09:06:35,410  - mini_batch_size: "4"
2023-10-20 09:06:35,410  - max_epochs: "10"
2023-10-20 09:06:35,410  - shuffle: "True"
2023-10-20 09:06:35,410 ----------------------------------------------------------------------------------------------------
2023-10-20 09:06:35,411 Plugins:
2023-10-20 09:06:35,411  - TensorboardLogger
2023-10-20 09:06:35,411  - LinearScheduler | warmup_fraction: '0.1'
2023-10-20 09:06:35,411 ----------------------------------------------------------------------------------------------------
2023-10-20 09:06:35,411 Final evaluation on model from best epoch (best-model.pt)
2023-10-20 09:06:35,411  - metric: "('micro avg', 'f1-score')"
2023-10-20 09:06:35,411 ----------------------------------------------------------------------------------------------------
2023-10-20 09:06:35,411 Computation:
2023-10-20 09:06:35,411  - compute on device: cuda:0
2023-10-20 09:06:35,411  - embedding storage: none
2023-10-20 09:06:35,411 ----------------------------------------------------------------------------------------------------
2023-10-20 09:06:35,411 Model training base path: "hmbench-topres19th/en-dbmdz/bert-tiny-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1"
2023-10-20 09:06:35,411 ----------------------------------------------------------------------------------------------------
2023-10-20 09:06:35,411 ----------------------------------------------------------------------------------------------------
2023-10-20 09:06:35,411 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-20 09:06:37,833 epoch 1 - iter 154/1546 - loss 3.28397095 - time (sec): 2.42 - samples/sec: 5244.37 - lr: 0.000003 - momentum: 0.000000
2023-10-20 09:06:40,154 epoch 1 - iter 308/1546 - loss 2.99105285 - time (sec): 4.74 - samples/sec: 5139.46 - lr: 0.000006 - momentum: 0.000000
2023-10-20 09:06:42,531 epoch 1 - iter 462/1546 - loss 2.52293414 - time (sec): 7.12 - samples/sec: 5133.11 - lr: 0.000009 - momentum: 0.000000
2023-10-20 09:06:44,753 epoch 1 - iter 616/1546 - loss 2.02560749 - time (sec): 9.34 - samples/sec: 5282.45 - lr: 0.000012 - momentum: 0.000000
2023-10-20 09:06:46,974 epoch 1 - iter 770/1546 - loss 1.67950423 - time (sec): 11.56 - samples/sec: 5315.86 - lr: 0.000015 - momentum: 0.000000
2023-10-20 09:06:49,149 epoch 1 - iter 924/1546 - loss 1.45624081 - time (sec): 13.74 - samples/sec: 5319.42 - lr: 0.000018 - momentum: 0.000000
2023-10-20 09:06:51,518 epoch 1 - iter 1078/1546 - loss 1.28121677 - time (sec): 16.11 - samples/sec: 5324.77 - lr: 0.000021 - momentum: 0.000000
2023-10-20 09:06:53,979 epoch 1 - iter 1232/1546 - loss 1.14682597 - time (sec): 18.57 - samples/sec: 5319.74 - lr: 0.000024 - momentum: 0.000000
2023-10-20 09:06:56,359 epoch 1 - iter 1386/1546 - loss 1.05075802 - time (sec): 20.95 - samples/sec: 5283.56 - lr: 0.000027 - momentum: 0.000000
2023-10-20 09:06:58,781 epoch 1 - iter 1540/1546 - loss 0.96746300 - time (sec): 23.37 - samples/sec: 5294.97 - lr: 0.000030 - momentum: 0.000000
2023-10-20 09:06:58,888 ----------------------------------------------------------------------------------------------------
2023-10-20 09:06:58,888 EPOCH 1 done: loss 0.9635 - lr: 0.000030
2023-10-20 09:06:59,562 DEV : loss 0.1460493505001068 - f1-score (micro avg)  0.0
2023-10-20 09:06:59,573 ----------------------------------------------------------------------------------------------------
2023-10-20 09:07:01,954 epoch 2 - iter 154/1546 - loss 0.23058634 - time (sec): 2.38 - samples/sec: 5219.28 - lr: 0.000030 - momentum: 0.000000
2023-10-20 09:07:04,312 epoch 2 - iter 308/1546 - loss 0.22254356 - time (sec): 4.74 - samples/sec: 5059.52 - lr: 0.000029 - momentum: 0.000000
2023-10-20 09:07:06,666 epoch 2 - iter 462/1546 - loss 0.22366210 - time (sec): 7.09 - samples/sec: 4999.49 - lr: 0.000029 - momentum: 0.000000
2023-10-20 09:07:09,084 epoch 2 - iter 616/1546 - loss 0.21092520 - time (sec): 9.51 - samples/sec: 5084.24 - lr: 0.000029 - momentum: 0.000000
2023-10-20 09:07:11,446 epoch 2 - iter 770/1546 - loss 0.20806216 - time (sec): 11.87 - samples/sec: 5152.85 - lr: 0.000028 - momentum: 0.000000
2023-10-20 09:07:13,762 epoch 2 - iter 924/1546 - loss 0.20526902 - time (sec): 14.19 - samples/sec: 5138.44 - lr: 0.000028 - momentum: 0.000000
2023-10-20 09:07:16,170 epoch 2 - iter 1078/1546 - loss 0.20379508 - time (sec): 16.60 - samples/sec: 5111.99 - lr: 0.000028 - momentum: 0.000000
2023-10-20 09:07:18,549 epoch 2 - iter 1232/1546 - loss 0.20172155 - time (sec): 18.98 - samples/sec: 5138.82 - lr: 0.000027 - momentum: 0.000000
2023-10-20 09:07:20,996 epoch 2 - iter 1386/1546 - loss 0.20086049 - time (sec): 21.42 - samples/sec: 5126.79 - lr: 0.000027 - momentum: 0.000000
2023-10-20 09:07:23,418 epoch 2 - iter 1540/1546 - loss 0.19704649 - time (sec): 23.84 - samples/sec: 5183.51 - lr: 0.000027 - momentum: 0.000000
2023-10-20 09:07:23,513 ----------------------------------------------------------------------------------------------------
2023-10-20 09:07:23,513 EPOCH 2 done: loss 0.1964 - lr: 0.000027
2023-10-20 09:07:24,832 DEV : loss 0.09642348438501358 - f1-score (micro avg)  0.452
2023-10-20 09:07:24,844 saving best model
2023-10-20 09:07:24,878 ----------------------------------------------------------------------------------------------------
2023-10-20 09:07:27,163 epoch 3 - iter 154/1546 - loss 0.16756513 - time (sec): 2.28 - samples/sec: 5008.14 - lr: 0.000026 - momentum: 0.000000
2023-10-20 09:07:29,473 epoch 3 - iter 308/1546 - loss 0.15306420 - time (sec): 4.59 - samples/sec: 5243.02 - lr: 0.000026 - momentum: 0.000000
2023-10-20 09:07:31,759 epoch 3 - iter 462/1546 - loss 0.14828552 - time (sec): 6.88 - samples/sec: 5298.73 - lr: 0.000026 - momentum: 0.000000
2023-10-20 09:07:34,118 epoch 3 - iter 616/1546 - loss 0.15847543 - time (sec): 9.24 - samples/sec: 5349.69 - lr: 0.000025 - momentum: 0.000000
2023-10-20 09:07:36,476 epoch 3 - iter 770/1546 - loss 0.15836327 - time (sec): 11.60 - samples/sec: 5290.33 - lr: 0.000025 - momentum: 0.000000
2023-10-20 09:07:38,811 epoch 3 - iter 924/1546 - loss 0.15990269 - time (sec): 13.93 - samples/sec: 5374.68 - lr: 0.000025 - momentum: 0.000000
2023-10-20 09:07:41,185 epoch 3 - iter 1078/1546 - loss 0.16137110 - time (sec): 16.31 - samples/sec: 5359.58 - lr: 0.000024 - momentum: 0.000000
2023-10-20 09:07:43,553 epoch 3 - iter 1232/1546 - loss 0.16066108 - time (sec): 18.67 - samples/sec: 5353.33 - lr: 0.000024 - momentum: 0.000000
2023-10-20 09:07:45,922 epoch 3 - iter 1386/1546 - loss 0.16038985 - time (sec): 21.04 - samples/sec: 5281.58 - lr: 0.000024 - momentum: 0.000000
2023-10-20 09:07:48,314 epoch 3 - iter 1540/1546 - loss 0.15944440 - time (sec): 23.44 - samples/sec: 5277.46 - lr: 0.000023 - momentum: 0.000000
2023-10-20 09:07:48,405 ----------------------------------------------------------------------------------------------------
2023-10-20 09:07:48,405 EPOCH 3 done: loss 0.1593 - lr: 0.000023
2023-10-20 09:07:49,466 DEV : loss 0.0896943062543869 - f1-score (micro avg)  0.5099
2023-10-20 09:07:49,477 saving best model
2023-10-20 09:07:49,512 ----------------------------------------------------------------------------------------------------
2023-10-20 09:07:51,999 epoch 4 - iter 154/1546 - loss 0.15769143 - time (sec): 2.49 - samples/sec: 5070.16 - lr: 0.000023 - momentum: 0.000000
2023-10-20 09:07:54,306 epoch 4 - iter 308/1546 - loss 0.14433493 - time (sec): 4.79 - samples/sec: 5182.99 - lr: 0.000023 - momentum: 0.000000
2023-10-20 09:07:56,624 epoch 4 - iter 462/1546 - loss 0.15210379 - time (sec): 7.11 - samples/sec: 5030.59 - lr: 0.000022 - momentum: 0.000000
2023-10-20 09:07:58,995 epoch 4 - iter 616/1546 - loss 0.15295122 - time (sec): 9.48 - samples/sec: 5109.69 - lr: 0.000022 - momentum: 0.000000
2023-10-20 09:08:01,502 epoch 4 - iter 770/1546 - loss 0.15434920 - time (sec): 11.99 - samples/sec: 5061.65 - lr: 0.000022 - momentum: 0.000000
2023-10-20 09:08:03,980 epoch 4 - iter 924/1546 - loss 0.15086170 - time (sec): 14.47 - samples/sec: 5039.38 - lr: 0.000021 - momentum: 0.000000
2023-10-20 09:08:06,343 epoch 4 - iter 1078/1546 - loss 0.14718520 - time (sec): 16.83 - samples/sec: 5118.47 - lr: 0.000021 - momentum: 0.000000
2023-10-20 09:08:08,710 epoch 4 - iter 1232/1546 - loss 0.14718548 - time (sec): 19.20 - samples/sec: 5163.73 - lr: 0.000021 - momentum: 0.000000
2023-10-20 09:08:11,129 epoch 4 - iter 1386/1546 - loss 0.14835468 - time (sec): 21.62 - samples/sec: 5143.52 - lr: 0.000020 - momentum: 0.000000
2023-10-20 09:08:13,586 epoch 4 - iter 1540/1546 - loss 0.14859824 - time (sec): 24.07 - samples/sec: 5144.69 - lr: 0.000020 - momentum: 0.000000
2023-10-20 09:08:13,668 ----------------------------------------------------------------------------------------------------
2023-10-20 09:08:13,669 EPOCH 4 done: loss 0.1485 - lr: 0.000020
2023-10-20 09:08:14,728 DEV : loss 0.08766192942857742 - f1-score (micro avg)  0.5747
2023-10-20 09:08:14,738 saving best model
2023-10-20 09:08:14,771 ----------------------------------------------------------------------------------------------------
2023-10-20 09:08:17,083 epoch 5 - iter 154/1546 - loss 0.12769709 - time (sec): 2.31 - samples/sec: 5337.69 - lr: 0.000020 - momentum: 0.000000
2023-10-20 09:08:19,442 epoch 5 - iter 308/1546 - loss 0.13094414 - time (sec): 4.67 - samples/sec: 5128.06 - lr: 0.000019 - momentum: 0.000000
2023-10-20 09:08:21,893 epoch 5 - iter 462/1546 - loss 0.13300073 - time (sec): 7.12 - samples/sec: 5051.31 - lr: 0.000019 - momentum: 0.000000
2023-10-20 09:08:24,311 epoch 5 - iter 616/1546 - loss 0.13238196 - time (sec): 9.54 - samples/sec: 5160.07 - lr: 0.000019 - momentum: 0.000000
2023-10-20 09:08:26,690 epoch 5 - iter 770/1546 - loss 0.13428010 - time (sec): 11.92 - samples/sec: 5219.68 - lr: 0.000018 - momentum: 0.000000
2023-10-20 09:08:29,059 epoch 5 - iter 924/1546 - loss 0.13243603 - time (sec): 14.29 - samples/sec: 5203.51 - lr: 0.000018 - momentum: 0.000000
2023-10-20 09:08:31,427 epoch 5 - iter 1078/1546 - loss 0.13095759 - time (sec): 16.66 - samples/sec: 5184.83 - lr: 0.000018 - momentum: 0.000000
2023-10-20 09:08:33,859 epoch 5 - iter 1232/1546 - loss 0.13464576 - time (sec): 19.09 - samples/sec: 5174.45 - lr: 0.000017 - momentum: 0.000000
2023-10-20 09:08:36,291 epoch 5 - iter 1386/1546 - loss 0.13608735 - time (sec): 21.52 - samples/sec: 5199.06 - lr: 0.000017 - momentum: 0.000000
2023-10-20 09:08:38,636 epoch 5 - iter 1540/1546 - loss 0.13658634 - time (sec): 23.86 - samples/sec: 5187.95 - lr: 0.000017 - momentum: 0.000000
2023-10-20 09:08:38,723 ----------------------------------------------------------------------------------------------------
2023-10-20 09:08:38,723 EPOCH 5 done: loss 0.1363 - lr: 0.000017
2023-10-20 09:08:39,806 DEV : loss 0.08561883121728897 - f1-score (micro avg)  0.588
2023-10-20 09:08:39,817 saving best model
2023-10-20 09:08:39,849 ----------------------------------------------------------------------------------------------------
2023-10-20 09:08:42,216 epoch 6 - iter 154/1546 - loss 0.10872815 - time (sec): 2.37 - samples/sec: 5045.83 - lr: 0.000016 - momentum: 0.000000
2023-10-20 09:08:44,590 epoch 6 - iter 308/1546 - loss 0.11960726 - time (sec): 4.74 - samples/sec: 5003.13 - lr: 0.000016 - momentum: 0.000000
2023-10-20 09:08:46,973 epoch 6 - iter 462/1546 - loss 0.13441599 - time (sec): 7.12 - samples/sec: 5024.85 - lr: 0.000016 - momentum: 0.000000
2023-10-20 09:08:49,131 epoch 6 - iter 616/1546 - loss 0.13530848 - time (sec): 9.28 - samples/sec: 5247.57 - lr: 0.000015 - momentum: 0.000000
2023-10-20 09:08:51,443 epoch 6 - iter 770/1546 - loss 0.14041532 - time (sec): 11.59 - samples/sec: 5202.06 - lr: 0.000015 - momentum: 0.000000
2023-10-20 09:08:53,814 epoch 6 - iter 924/1546 - loss 0.13528183 - time (sec): 13.96 - samples/sec: 5249.94 - lr: 0.000015 - momentum: 0.000000
2023-10-20 09:08:56,177 epoch 6 - iter 1078/1546 - loss 0.13227395 - time (sec): 16.33 - samples/sec: 5253.32 - lr: 0.000014 - momentum: 0.000000
2023-10-20 09:08:58,522 epoch 6 - iter 1232/1546 - loss 0.13103216 - time (sec): 18.67 - samples/sec: 5297.52 - lr: 0.000014 - momentum: 0.000000
2023-10-20 09:09:00,904 epoch 6 - iter 1386/1546 - loss 0.12991021 - time (sec): 21.05 - samples/sec: 5249.58 - lr: 0.000014 - momentum: 0.000000
2023-10-20 09:09:03,307 epoch 6 - iter 1540/1546 - loss 0.13230097 - time (sec): 23.46 - samples/sec: 5276.90 - lr: 0.000013 - momentum: 0.000000
2023-10-20 09:09:03,406 ----------------------------------------------------------------------------------------------------
2023-10-20 09:09:03,406 EPOCH 6 done: loss 0.1321 - lr: 0.000013
2023-10-20 09:09:04,491 DEV : loss 0.08819162845611572 - f1-score (micro avg)  0.6039
2023-10-20 09:09:04,502 saving best model
2023-10-20 09:09:04,536 ----------------------------------------------------------------------------------------------------
2023-10-20 09:09:07,006 epoch 7 - iter 154/1546 - loss 0.11723149 - time (sec): 2.47 - samples/sec: 5437.44 - lr: 0.000013 - momentum: 0.000000
2023-10-20 09:09:09,369 epoch 7 - iter 308/1546 - loss 0.11870071 - time (sec): 4.83 - samples/sec: 5146.87 - lr: 0.000013 - momentum: 0.000000
2023-10-20 09:09:11,751 epoch 7 - iter 462/1546 - loss 0.11534894 - time (sec): 7.21 - samples/sec: 5251.42 - lr: 0.000012 - momentum: 0.000000
2023-10-20 09:09:14,090 epoch 7 - iter 616/1546 - loss 0.12686834 - time (sec): 9.55 - samples/sec: 5179.35 - lr: 0.000012 - momentum: 0.000000
2023-10-20 09:09:16,467 epoch 7 - iter 770/1546 - loss 0.12653362 - time (sec): 11.93 - samples/sec: 5208.68 - lr: 0.000012 - momentum: 0.000000
2023-10-20 09:09:18,835 epoch 7 - iter 924/1546 - loss 0.12736348 - time (sec): 14.30 - samples/sec: 5228.86 - lr: 0.000011 - momentum: 0.000000
2023-10-20 09:09:21,220 epoch 7 - iter 1078/1546 - loss 0.12994923 - time (sec): 16.68 - samples/sec: 5236.09 - lr: 0.000011 - momentum: 0.000000
2023-10-20 09:09:23,602 epoch 7 - iter 1232/1546 - loss 0.12775059 - time (sec): 19.06 - samples/sec: 5245.07 - lr: 0.000011 - momentum: 0.000000
2023-10-20 09:09:26,092 epoch 7 - iter 1386/1546 - loss 0.12761801 - time (sec): 21.56 - samples/sec: 5181.77 - lr: 0.000010 - momentum: 0.000000
2023-10-20 09:09:28,442 epoch 7 - iter 1540/1546 - loss 0.12680413 - time (sec): 23.91 - samples/sec: 5179.14 - lr: 0.000010 - momentum: 0.000000
2023-10-20 09:09:28,532 ----------------------------------------------------------------------------------------------------
2023-10-20 09:09:28,532 EPOCH 7 done: loss 0.1266 - lr: 0.000010
2023-10-20 09:09:29,594 DEV : loss 0.08853663504123688 - f1-score (micro avg)  0.5949
2023-10-20 09:09:29,605 ----------------------------------------------------------------------------------------------------
2023-10-20 09:09:31,902 epoch 8 - iter 154/1546 - loss 0.10560379 - time (sec): 2.30 - samples/sec: 5298.60 - lr: 0.000010 - momentum: 0.000000
2023-10-20 09:09:34,349 epoch 8 - iter 308/1546 - loss 0.12872546 - time (sec): 4.74 - samples/sec: 5252.11 - lr: 0.000009 - momentum: 0.000000
2023-10-20 09:09:36,720 epoch 8 - iter 462/1546 - loss 0.13119470 - time (sec): 7.11 - samples/sec: 5187.26 - lr: 0.000009 - momentum: 0.000000
2023-10-20 09:09:39,051 epoch 8 - iter 616/1546 - loss 0.12502116 - time (sec): 9.45 - samples/sec: 5215.10 - lr: 0.000009 - momentum: 0.000000
2023-10-20 09:09:41,413 epoch 8 - iter 770/1546 - loss 0.12112850 - time (sec): 11.81 - samples/sec: 5278.34 - lr: 0.000008 - momentum: 0.000000
2023-10-20 09:09:43,859 epoch 8 - iter 924/1546 - loss 0.12463981 - time (sec): 14.25 - samples/sec: 5309.41 - lr: 0.000008 - momentum: 0.000000
2023-10-20 09:09:46,162 epoch 8 - iter 1078/1546 - loss 0.12423906 - time (sec): 16.56 - samples/sec: 5263.09 - lr: 0.000008 - momentum: 0.000000
2023-10-20 09:09:48,482 epoch 8 - iter 1232/1546 - loss 0.12613505 - time (sec): 18.88 - samples/sec: 5225.70 - lr: 0.000007 - momentum: 0.000000
2023-10-20 09:09:50,918 epoch 8 - iter 1386/1546 - loss 0.12382574 - time (sec): 21.31 - samples/sec: 5199.99 - lr: 0.000007 - momentum: 0.000000
2023-10-20 09:09:53,355 epoch 8 - iter 1540/1546 - loss 0.12351904 - time (sec): 23.75 - samples/sec: 5219.53 - lr: 0.000007 - momentum: 0.000000
2023-10-20 09:09:53,443 ----------------------------------------------------------------------------------------------------
2023-10-20 09:09:53,443 EPOCH 8 done: loss 0.1233 - lr: 0.000007
2023-10-20 09:09:54,533 DEV : loss 0.09046540409326553 - f1-score (micro avg)  0.6062
2023-10-20 09:09:54,545 saving best model
2023-10-20 09:09:54,583 ----------------------------------------------------------------------------------------------------
2023-10-20 09:09:56,973 epoch 9 - iter 154/1546 - loss 0.12165880 - time (sec): 2.39 - samples/sec: 5120.10 - lr: 0.000006 - momentum: 0.000000
2023-10-20 09:09:59,354 epoch 9 - iter 308/1546 - loss 0.11720672 - time (sec): 4.77 - samples/sec: 5174.59 - lr: 0.000006 - momentum: 0.000000
2023-10-20 09:10:01,652 epoch 9 - iter 462/1546 - loss 0.10950130 - time (sec): 7.07 - samples/sec: 5397.14 - lr: 0.000006 - momentum: 0.000000
2023-10-20 09:10:03,813 epoch 9 - iter 616/1546 - loss 0.11189291 - time (sec): 9.23 - samples/sec: 5423.30 - lr: 0.000005 - momentum: 0.000000
2023-10-20 09:10:05,958 epoch 9 - iter 770/1546 - loss 0.11566478 - time (sec): 11.37 - samples/sec: 5567.08 - lr: 0.000005 - momentum: 0.000000
2023-10-20 09:10:08,178 epoch 9 - iter 924/1546 - loss 0.12061263 - time (sec): 13.59 - samples/sec: 5535.08 - lr: 0.000005 - momentum: 0.000000
2023-10-20 09:10:10,589 epoch 9 - iter 1078/1546 - loss 0.12124174 - time (sec): 16.01 - samples/sec: 5494.20 - lr: 0.000004 - momentum: 0.000000
2023-10-20 09:10:12,970 epoch 9 - iter 1232/1546 - loss 0.12235867 - time (sec): 18.39 - samples/sec: 5445.86 - lr: 0.000004 - momentum: 0.000000
2023-10-20 09:10:15,300 epoch 9 - iter 1386/1546 - loss 0.12037485 - time (sec): 20.72 - samples/sec: 5384.65 - lr: 0.000004 - momentum: 0.000000
2023-10-20 09:10:17,700 epoch 9 - iter 1540/1546 - loss 0.11940803 - time (sec): 23.12 - samples/sec: 5359.10 - lr: 0.000003 - momentum: 0.000000
2023-10-20 09:10:17,787 ----------------------------------------------------------------------------------------------------
2023-10-20 09:10:17,787 EPOCH 9 done: loss 0.1193 - lr: 0.000003
2023-10-20 09:10:18,860 DEV : loss 0.09189001470804214 - f1-score (micro avg)  0.6117
2023-10-20 09:10:18,871 saving best model
2023-10-20 09:10:18,902 ----------------------------------------------------------------------------------------------------
2023-10-20 09:10:21,118 epoch 10 - iter 154/1546 - loss 0.12687807 - time (sec): 2.22 - samples/sec: 5422.87 - lr: 0.000003 - momentum: 0.000000
2023-10-20 09:10:23,371 epoch 10 - iter 308/1546 - loss 0.12068074 - time (sec): 4.47 - samples/sec: 5568.10 - lr: 0.000003 - momentum: 0.000000
2023-10-20 09:10:25,575 epoch 10 - iter 462/1546 - loss 0.12030419 - time (sec): 6.67 - samples/sec: 5713.42 - lr: 0.000002 - momentum: 0.000000
2023-10-20 09:10:27,713 epoch 10 - iter 616/1546 - loss 0.11605372 - time (sec): 8.81 - samples/sec: 5773.02 - lr: 0.000002 - momentum: 0.000000
2023-10-20 09:10:30,067 epoch 10 - iter 770/1546 - loss 0.11801476 - time (sec): 11.16 - samples/sec: 5649.92 - lr: 0.000002 - momentum: 0.000000
2023-10-20 09:10:32,425 epoch 10 - iter 924/1546 - loss 0.11442404 - time (sec): 13.52 - samples/sec: 5565.71 - lr: 0.000001 - momentum: 0.000000
2023-10-20 09:10:34,785 epoch 10 - iter 1078/1546 - loss 0.11142937 - time (sec): 15.88 - samples/sec: 5542.35 - lr: 0.000001 - momentum: 0.000000
2023-10-20 09:10:37,138 epoch 10 - iter 1232/1546 - loss 0.11098365 - time (sec): 18.24 - samples/sec: 5458.00 - lr: 0.000001 - momentum: 0.000000
2023-10-20 09:10:39,490 epoch 10 - iter 1386/1546 - loss 0.11535574 - time (sec): 20.59 - samples/sec: 5430.96 - lr: 0.000000 - momentum: 0.000000
2023-10-20 09:10:41,875 epoch 10 - iter 1540/1546 - loss 0.11683715 - time (sec): 22.97 - samples/sec: 5397.34 - lr: 0.000000 - momentum: 0.000000
2023-10-20 09:10:41,963 ----------------------------------------------------------------------------------------------------
2023-10-20 09:10:41,963 EPOCH 10 done: loss 0.1167 - lr: 0.000000
2023-10-20 09:10:43,032 DEV : loss 0.0931963250041008 - f1-score (micro avg)  0.6154
2023-10-20 09:10:43,043 saving best model
2023-10-20 09:10:43,106 ----------------------------------------------------------------------------------------------------
2023-10-20 09:10:43,106 Loading model from best epoch ...
2023-10-20 09:10:43,182 SequenceTagger predicts: Dictionary with 13 tags: O, S-LOC, B-LOC, E-LOC, I-LOC, S-BUILDING, B-BUILDING, E-BUILDING, I-BUILDING, S-STREET, B-STREET, E-STREET, I-STREET
2023-10-20 09:10:46,022 
Results:
- F-score (micro) 0.5552
- F-score (macro) 0.2272
- Accuracy 0.4001

By class:
              precision    recall  f1-score   support

         LOC     0.6223    0.6321    0.6272       946
    BUILDING     0.1333    0.0108    0.0200       185
      STREET     0.5000    0.0179    0.0345        56

   micro avg     0.6145    0.5063    0.5552      1187
   macro avg     0.4185    0.2203    0.2272      1187
weighted avg     0.5403    0.5063    0.5046      1187

2023-10-20 09:10:46,022 ----------------------------------------------------------------------------------------------------