File size: 2,173 Bytes
b66d2b8
 
f883800
b66d2b8
3b643b7
b66d2b8
 
3b643b7
b66d2b8
 
 
3b643b7
b66d2b8
 
 
 
 
3b643b7
 
b66d2b8
 
f883800
b66d2b8
 
 
3b643b7
b66d2b8
 
 
 
 
3b643b7
b66d2b8
3b643b7
b66d2b8
3b643b7
 
b66d2b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c17a7b
b66d2b8
4c17a7b
 
b66d2b8
 
 
 
 
 
 
 
4c17a7b
 
 
 
 
 
 
b66d2b8
 
 
 
f883800
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
license: apache-2.0
base_model: openai/whisper-small
tags:
- whisper-event
- generated_from_trainer
datasets:
- google/fleurs
metrics:
- wer
model-index:
- name: Whisper small shona
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: google/fleurs sn_zw
      type: google/fleurs
      config: sn_zw
      split: test
      args: sn_zw
    metrics:
    - name: Wer
      type: wer
      value: 49.90958408679928
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper small shona

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the google/fleurs sn_zw dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1220
- Wer: 49.9096

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 3
- gradient_accumulation_steps: 2
- total_train_batch_size: 48
- total_eval_batch_size: 48
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 2000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer     |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 0.0064        | 24.24  | 400  | 0.9630          | 50.7233 |
| 0.001         | 48.48  | 800  | 1.0617          | 49.9397 |
| 0.0005        | 72.73  | 1200 | 1.1016          | 49.9397 |
| 0.0004        | 96.97  | 1600 | 1.1220          | 49.9096 |
| 0.0003        | 121.21 | 2000 | 1.1298          | 50.0422 |


### Framework versions

- Transformers 4.37.1
- Pytorch 1.12.0+cu102
- Datasets 2.16.1
- Tokenizers 0.15.1