--- license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - fleurs metrics: - wer model-index: - name: whisper-small-shona results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: fleurs type: fleurs config: sn_zw split: test args: sn_zw metrics: - name: Wer type: wer value: 50.04219409282701 --- # whisper-small-shona This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the fleurs dataset. It achieves the following results on the evaluation set: - Loss: 1.1298 - Wer: 50.0422 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - num_devices: 3 - gradient_accumulation_steps: 2 - total_train_batch_size: 48 - total_eval_batch_size: 48 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.0064 | 24.24 | 400 | 0.9630 | 50.7233 | | 0.001 | 48.48 | 800 | 1.0617 | 49.9397 | | 0.0005 | 72.73 | 1200 | 1.1016 | 49.9397 | | 0.0004 | 96.97 | 1600 | 1.1220 | 49.9096 | | 0.0003 | 121.21 | 2000 | 1.1298 | 50.0422 | ### Framework versions - Transformers 4.37.1 - Pytorch 1.12.0+cu102 - Datasets 2.16.1 - Tokenizers 0.15.1