--- license: apache-2.0 base_model: openai/whisper-small tags: - whisper-event - generated_from_trainer datasets: - google/fleurs metrics: - wer model-index: - name: Whisper small shona results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: google/fleurs sn_zw type: google/fleurs config: sn_zw split: test args: sn_zw metrics: - name: Wer type: wer value: 45.9 --- # Whisper small shona This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the google/fleurs sn_zw dataset. It achieves the following results on the evaluation set: - Loss: 0.9653 - Wer: 45.9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.09 | 8.16 | 400 | 0.8572 | 50.6875 | | 0.0019 | 16.33 | 800 | 0.9069 | 46.4438 | | 0.0008 | 24.49 | 1200 | 0.9473 | 46.0438 | | 0.0006 | 32.65 | 1600 | 0.9653 | 45.9 | | 0.0005 | 40.82 | 2000 | 0.9720 | 45.9438 | ### Framework versions - Transformers 4.37.1 - Pytorch 1.12.0+cu102 - Datasets 2.16.1 - Tokenizers 0.15.1