File size: 2,049 Bytes
82e64b3
0f8925c
1e1c64e
0f8925c
4337dde
 
0f8925c
 
 
 
 
03cb796
 
d778559
 
 
 
eb8e84c
d778559
 
 
 
 
967b2cc
82e64b3
0f8925c
 
 
 
 
 
03cb796
967b2cc
 
 
0f8925c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
967b2cc
 
 
 
 
 
 
 
 
0f8925c
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
language:
- ta
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- google/fleurs
model-index:
- name: whisper-small-tamil
  results: 
    - task:
        name: Automatic Speech Recognition
        type: automatic-speech-recognition
      dataset:
        name: google/fleurs
        type: google/fleurs
        config: ta_in
        split: test
      metrics:
        - name: Wer
          type: wer
          value: 15.021
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-small-tamil

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the google/fleurs dataset for Tamil.
It achieves the following results on the evaluation set:
- Loss: 0.42
- Wer: 15.02
## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP

### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer     |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.0882        | 2.27  | 500  | 0.2674          | 16.7354 |
| 0.0026        | 11.76 | 1000 | 0.3508          | 15.3720 |
| 0.0012        | 17.64 | 1500 | 0.3920          | 15.6156 |
| 0.0009        | 23.53 | 2000 | 0.4076          | 15.4284 |
| 0.0002        | 29.41 | 2500 | 0.4268          | 15.0215 |

### Framework versions

- Transformers 4.24.0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1
- Tokenizers 0.13.2