File size: 2,049 Bytes
82e64b3 0f8925c 1e1c64e 0f8925c 4337dde 0f8925c 03cb796 d778559 eb8e84c d778559 967b2cc 82e64b3 0f8925c 03cb796 967b2cc 0f8925c 967b2cc 0f8925c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
---
language:
- ta
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- google/fleurs
model-index:
- name: whisper-small-tamil
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: google/fleurs
type: google/fleurs
config: ta_in
split: test
metrics:
- name: Wer
type: wer
value: 15.021
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-small-tamil
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the google/fleurs dataset for Tamil.
It achieves the following results on the evaluation set:
- Loss: 0.42
- Wer: 15.02
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.0882 | 2.27 | 500 | 0.2674 | 16.7354 |
| 0.0026 | 11.76 | 1000 | 0.3508 | 15.3720 |
| 0.0012 | 17.64 | 1500 | 0.3920 | 15.6156 |
| 0.0009 | 23.53 | 2000 | 0.4076 | 15.4284 |
| 0.0002 | 29.41 | 2500 | 0.4268 | 15.0215 |
### Framework versions
- Transformers 4.24.0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1
- Tokenizers 0.13.2
|