steveyn400
commited on
Commit
•
9335b23
1
Parent(s):
7886080
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +95 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 252.11 +/- 22.88
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6502485550>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f65024855e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6502485670>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6502485700>", "_build": "<function ActorCriticPolicy._build at 0x7f6502485790>", "forward": "<function ActorCriticPolicy.forward at 0x7f6502485820>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f65024858b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6502485940>", "_predict": "<function ActorCriticPolicy._predict at 0x7f65024859d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6502485a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6502485af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6502485b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f65024875c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678379095395576085, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANovkb32tHK6AEkSPLxM/TZ83+O6U373NQAAAAAAAIA/ZgLsOyvKmT1+Pke9/tIPvktNbrxSeVO9AAAAAAAAAAAzZEy+JXOxPjjsiD5Pwoi+LKinPZPWOT0AAAAAAAAAAPqNi76mwz0/ej0WPvGGt773dYm8w5odPgAAAAAAAAAAJrPOPeHwjbo4Y086ia69tOU7dDpDj225AACAPwAAgD+axxa9hXvhuQYPxDaRMf4wLvYUu8XF5rUAAIA/AACAPzNY/LzDCUq6pV6tu4GGAThZZ0c7TVjvtAAAgD8AAIA/Zh0VPfHrZjwAXb+96gw0vhxZCb0nQJw7AAAAAAAAAACNduu9H7hrPt4yHD5OFya+vWHGu6KPqrsAAAAAAAAAABoi0709mig/WyuDvUfUr76/+Zm9D7wKvQAAAAAAAAAAZjapvJyeG7yC7bw9EImlvTxLezz41pg8AACAPwAAgD+zcmO9SEChP3LNxr7tEgy/+9agvFI39L0AAAAAAAAAALNLAT6ffMs8YBeXvae8uL1UIea8FdUTvQAAAAAAAAAAmmsTvVyfXbrJw445NC+PNLzSIDu62qe4AACAPwAAgD+aWVY79nxruhIMfrYks2GxyQKNuXoylzUAAIA/AACAP2aYbDxwobI/DlcFPn4HQL5kBBG8i90vPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIjiEAOHZzZ0CUhpRSlIwBbJRN6AOMAXSUR0CWFQ5rP+n7dX2UKGgGaAloD0MIevtz0RAyZUCUhpRSlGgVTegDaBZHQJYWZoEjgQ91fZQoaAZoCWgPQwiHwmfr4EFxQJSGlFKUaBVNBANoFkdAlhei0BwMpnV9lChoBmgJaA9DCDJ1V3bBGmdAlIaUUpRoFU3oA2gWR0CWGKQ5WBBidX2UKGgGaAloD0MIzT/6Jk3QcECUhpRSlGgVTaEDaBZHQJYcRT4tYjl1fZQoaAZoCWgPQwhWLekoBzpoQJSGlFKUaBVN6ANoFkdAlj1EaAFxGXV9lChoBmgJaA9DCBmsONVakWJAlIaUUpRoFU3oA2gWR0CWPWSIgvDhdX2UKGgGaAloD0MIhzO/moNKY0CUhpRSlGgVTegDaBZHQJY9j4XXRPZ1fZQoaAZoCWgPQwi0rzxIT0tFQJSGlFKUaBVLyWgWR0CWPgSUkfLcdX2UKGgGaAloD0MIbypSYexsbECUhpRSlGgVTWoBaBZHQJZArG8274B1fZQoaAZoCWgPQwjYne488aRkQJSGlFKUaBVN6ANoFkdAlkN2E9Mbm3V9lChoBmgJaA9DCNwsXiyMUmdAlIaUUpRoFU3oA2gWR0CWRt8fms/6dX2UKGgGaAloD0MISGx3D1DeYUCUhpRSlGgVTegDaBZHQJZG7lA/s3R1fZQoaAZoCWgPQwjy6hwDMmhkQJSGlFKUaBVN6ANoFkdAlk9A2VE/jnV9lChoBmgJaA9DCBuDTggdE19AlIaUUpRoFU3oA2gWR0CWUFyKNyYHdX2UKGgGaAloD0MINEsC1NTUZkCUhpRSlGgVTegDaBZHQJZWlcjZ+QV1fZQoaAZoCWgPQwjnps04DZRgQJSGlFKUaBVN6ANoFkdAllslQhwEQ3V9lChoBmgJaA9DCJLPK556QG9AlIaUUpRoFU3BAWgWR0CWYpqZc9nsdX2UKGgGaAloD0MILv62J0j1XUCUhpRSlGgVTegDaBZHQJZsMPEsJ6Z1fZQoaAZoCWgPQwhv8fCeg2FlQJSGlFKUaBVN6ANoFkdAlm4GuPmxMXV9lChoBmgJaA9DCHEBaJQu2mJAlIaUUpRoFU3oA2gWR0CWcW29+PRzdX2UKGgGaAloD0MIUmUYd4ORYECUhpRSlGgVTegDaBZHQJZ251DBuXN1fZQoaAZoCWgPQwgawjHLHghgQJSGlFKUaBVN6ANoFkdAlpQbXpW3jXV9lChoBmgJaA9DCOwS1VsD02NAlIaUUpRoFU3oA2gWR0CWlDwTufEodX2UKGgGaAloD0MI9pUH6akbZ0CUhpRSlGgVTegDaBZHQJaUbhFVktp1fZQoaAZoCWgPQwiXPJ6Wn1JxQJSGlFKUaBVNGAJoFkdAlpSR7mdRSHV9lChoBmgJaA9DCHqOyHepgGNAlIaUUpRoFU3oA2gWR0CWlOeWv8qGdX2UKGgGaAloD0MIqWis/Z2yXUCUhpRSlGgVTegDaBZHQJaX40P6KtR1fZQoaAZoCWgPQwivWpnwyxhiQJSGlFKUaBVN6ANoFkdAlpq0JKJ2uHV9lChoBmgJaA9DCB8tzhjm7WZAlIaUUpRoFU3oA2gWR0CWniTz/ZM+dX2UKGgGaAloD0MIObNdoQ/ZYUCUhpRSlGgVTegDaBZHQJapH655JK91fZQoaAZoCWgPQwjEzhQ6r7FjQJSGlFKUaBVN6ANoFkdAlqrfAO8TSXV9lChoBmgJaA9DCHY4ukr3P2hAlIaUUpRoFU3oA2gWR0CWut9pRGc4dX2UKGgGaAloD0MIj3Ba8KKOckCUhpRSlGgVTZkBaBZHQJa7H9m6Gxl1fZQoaAZoCWgPQwjbNSGt8SJxQJSGlFKUaBVNeAJoFkdAlsF1VxS5y3V9lChoBmgJaA9DCDoHz4Qm2W9AlIaUUpRoFU3fA2gWR0CWwkvllsgudX2UKGgGaAloD0MIX3tmSYAiZECUhpRSlGgVTegDaBZHQJbKwkmhM8J1fZQoaAZoCWgPQwi4H/DAAA1lQJSGlFKUaBVN6ANoFkdAlsws2eg+QnV9lChoBmgJaA9DCPZf56bNb1tAlIaUUpRoFU3oA2gWR0CWzr3EQ5FPdX2UKGgGaAloD0MI8GlOXuRXb0CUhpRSlGgVTUsDaBZHQJbPqoDPnjh1fZQoaAZoCWgPQwhaRX9o5p9sQJSGlFKUaBVNZANoFkdAltIYsAeaKHV9lChoBmgJaA9DCBX/d0SFm2FAlIaUUpRoFU3oA2gWR0CW0wy1uzhQdX2UKGgGaAloD0MIWcSwwxi4bUCUhpRSlGgVTT4DaBZHQJbTVEXtSht1fZQoaAZoCWgPQwgbR6zF541wQJSGlFKUaBVN4wJoFkdAltVlMEidKHV9lChoBmgJaA9DCEljtI6q52BAlIaUUpRoFU3oA2gWR0CW2JAksz2wdX2UKGgGaAloD0MIzeodbofwYECUhpRSlGgVTegDaBZHQJbY5TR6WxB1fZQoaAZoCWgPQwjSN2kalLlwQJSGlFKUaBVNpgJoFkdAlvalsDW9UXV9lChoBmgJaA9DCJASu7Z3V3FAlIaUUpRoFU1HAWgWR0CW/FHGS6lMdX2UKGgGaAloD0MI2SQ/4te9bkCUhpRSlGgVTQYBaBZHQJb8uFdszl91fZQoaAZoCWgPQwiE1O3sK/hxQJSGlFKUaBVNWgJoFkdAlwB6FM7EHnV9lChoBmgJaA9DCAualliZanBAlIaUUpRoFU3LAmgWR0CXAb4XoC+2dX2UKGgGaAloD0MIHF2luysWcUCUhpRSlGgVTdoCaBZHQJcCv5wfhdd1fZQoaAZoCWgPQwg8+IkDqG1wQJSGlFKUaBVNeQJoFkdAlwLmZRbbDnV9lChoBmgJaA9DCGByo8gabXBAlIaUUpRoFU2cA2gWR0CXAwF9KEnLdX2UKGgGaAloD0MI81Zdh2pDbkCUhpRSlGgVTcIBaBZHQJcIuOPvKEF1fZQoaAZoCWgPQwg0+PvFbH5rQJSGlFKUaBVNwwJoFkdAlw1I1He7+XV9lChoBmgJaA9DCAmmmllLmHFAlIaUUpRoFU0JAmgWR0CXE2Y2bXpXdX2UKGgGaAloD0MICLDIr59dckCUhpRSlGgVTe8BaBZHQJcZYK2KEWZ1fZQoaAZoCWgPQwjUDRR4J29vQJSGlFKUaBVNswJoFkdAlxtu76Hj63V9lChoBmgJaA9DCCsYldRJZHJAlIaUUpRoFU0lA2gWR0CXHDpJwsGxdX2UKGgGaAloD0MIeCY0SezzcUCUhpRSlGgVTaoDaBZHQJceYAyVObl1fZQoaAZoCWgPQwhp4bIKGxZjQJSGlFKUaBVN6ANoFkdAlydcEvCdjHV9lChoBmgJaA9DCIGv6NZr6WFAlIaUUpRoFU3oA2gWR0CXKisFMZgpdX2UKGgGaAloD0MIIZT3cTSoX0CUhpRSlGgVTegDaBZHQJczRpcophF1fZQoaAZoCWgPQwghrweTonpwQJSGlFKUaBVNzAFoFkdAlzScgQpWm3V9lChoBmgJaA9DCI9wWvBiYXBAlIaUUpRoFU0zA2gWR0CXS6mCyyD7dX2UKGgGaAloD0MIldi1vV25bkCUhpRSlGgVTQoDaBZHQJdLqqIacZt1fZQoaAZoCWgPQwjwMsNGWQtsQJSGlFKUaBVNgwNoFkdAl0v1g6U7jnV9lChoBmgJaA9DCERSCyUTUnBAlIaUUpRoFU0FA2gWR0CXUViRnvlVdX2UKGgGaAloD0MIoYFYNrPhcUCUhpRSlGgVTTgBaBZHQJdSm2gFotd1fZQoaAZoCWgPQwgwuycPCwNtQJSGlFKUaBVN1gFoFkdAl1Lac3EQ5HV9lChoBmgJaA9DCBjNyvZhUHFAlIaUUpRoFU2iA2gWR0CXUy/NJOFhdX2UKGgGaAloD0MIZw+0AgMCcUCUhpRSlGgVTcQDaBZHQJdUZwsGxD91fZQoaAZoCWgPQwguAI3SJe1jQJSGlFKUaBVN6ANoFkdAl1T9SqEOAnV9lChoBmgJaA9DCNNOzeXG/3BAlIaUUpRoFU23AWgWR0CXVjF8XvYwdX2UKGgGaAloD0MInbgcr0CTcUCUhpRSlGgVTR0BaBZHQJdYYz544ZN1fZQoaAZoCWgPQwgbhSSzOjJwQJSGlFKUaBVN7wJoFkdAl1xy9EkSmXV9lChoBmgJaA9DCJqzPuWYymZAlIaUUpRoFU3oA2gWR0CXYPsmOU+tdX2UKGgGaAloD0MII6DCEaSqIUCUhpRSlGgVS8xoFkdAl2HnQMQVbnV9lChoBmgJaA9DCDFETl/PKW5AlIaUUpRoFU09AWgWR0CXY0wHJLdvdX2UKGgGaAloD0MISUikbXyyckCUhpRSlGgVTWoBaBZHQJdmzoRqXWx1fZQoaAZoCWgPQwg6I0p7A4JuQJSGlFKUaBVNNAFoFkdAl2bffsNUfnV9lChoBmgJaA9DCISCUrRygnFAlIaUUpRoFU12AWgWR0CXajs052hadX2UKGgGaAloD0MIG5yIfm0rcECUhpRSlGgVTWQCaBZHQJdqjd30PH11fZQoaAZoCWgPQwipTDEHQZVvQJSGlFKUaBVNzgFoFkdAl2sR1klNUXV9lChoBmgJaA9DCKw6qwU2R3FAlIaUUpRoFU3WAWgWR0CXbfXpGFzudX2UKGgGaAloD0MI7G0zFaKCckCUhpRSlGgVTZMCaBZHQJdufLcKw6h1fZQoaAZoCWgPQwjYKyy4HxNfQJSGlFKUaBVN6ANoFkdAl26OO801qHV9lChoBmgJaA9DCHzxRXu8QmJAlIaUUpRoFU3oA2gWR0CXbvUwi7kGdX2UKGgGaAloD0MInKiluZX5bUCUhpRSlGgVTSUBaBZHQJdxth9b5dp1fZQoaAZoCWgPQwjHEtbG2CxvQJSGlFKUaBVNBgNoFkdAl3NyFCb+cnV9lChoBmgJaA9DCBoaTwTxs3FAlIaUUpRoFU2pAWgWR0CXc+gDifg8dX2UKGgGaAloD0MIraHUXgS6cUCUhpRSlGgVTV4BaBZHQJd0+S3b2151fZQoaAZoCWgPQwhqFJLM6kpuQJSGlFKUaBVNBQFoFkdAl3Xe7QLNOnV9lChoBmgJaA9DCBqLprMTdm5AlIaUUpRoFU09AWgWR0CXdd+AEt/XdX2UKGgGaAloD0MI9Z81P757cUCUhpRSlGgVTZUBaBZHQJd1+u5jH4p1fZQoaAZoCWgPQwjyecVTDx5xQJSGlFKUaBVNBAFoFkdAl3lFwDNhVnV9lChoBmgJaA9DCGozTkNUpHBAlIaUUpRoFU1lAWgWR0CXelBSDRMOdX2UKGgGaAloD0MIgUHSp9W4ZkCUhpRSlGgVTegDaBZHQJd+pY8uBc11fZQoaAZoCWgPQwhcrn5s0kRwQJSGlFKUaBVNeQFoFkdAl37Mtf5ULnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9cf8feba14b34aa2ba7113cdd6d860dad9a631f4cbf0e1c96dc1a21d7bc3c5ba
|
3 |
+
size 147429
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f6502485550>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f65024855e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6502485670>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6502485700>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f6502485790>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f6502485820>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f65024858b0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6502485940>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f65024859d0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6502485a60>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6502485af0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6502485b80>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f65024875c0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1678379095395576085,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANovkb32tHK6AEkSPLxM/TZ83+O6U373NQAAAAAAAIA/ZgLsOyvKmT1+Pke9/tIPvktNbrxSeVO9AAAAAAAAAAAzZEy+JXOxPjjsiD5Pwoi+LKinPZPWOT0AAAAAAAAAAPqNi76mwz0/ej0WPvGGt773dYm8w5odPgAAAAAAAAAAJrPOPeHwjbo4Y086ia69tOU7dDpDj225AACAPwAAgD+axxa9hXvhuQYPxDaRMf4wLvYUu8XF5rUAAIA/AACAPzNY/LzDCUq6pV6tu4GGAThZZ0c7TVjvtAAAgD8AAIA/Zh0VPfHrZjwAXb+96gw0vhxZCb0nQJw7AAAAAAAAAACNduu9H7hrPt4yHD5OFya+vWHGu6KPqrsAAAAAAAAAABoi0709mig/WyuDvUfUr76/+Zm9D7wKvQAAAAAAAAAAZjapvJyeG7yC7bw9EImlvTxLezz41pg8AACAPwAAgD+zcmO9SEChP3LNxr7tEgy/+9agvFI39L0AAAAAAAAAALNLAT6ffMs8YBeXvae8uL1UIea8FdUTvQAAAAAAAAAAmmsTvVyfXbrJw445NC+PNLzSIDu62qe4AACAPwAAgD+aWVY79nxruhIMfrYks2GxyQKNuXoylzUAAIA/AACAP2aYbDxwobI/DlcFPn4HQL5kBBG8i90vPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIjiEAOHZzZ0CUhpRSlIwBbJRN6AOMAXSUR0CWFQ5rP+n7dX2UKGgGaAloD0MIevtz0RAyZUCUhpRSlGgVTegDaBZHQJYWZoEjgQ91fZQoaAZoCWgPQwiHwmfr4EFxQJSGlFKUaBVNBANoFkdAlhei0BwMpnV9lChoBmgJaA9DCDJ1V3bBGmdAlIaUUpRoFU3oA2gWR0CWGKQ5WBBidX2UKGgGaAloD0MIzT/6Jk3QcECUhpRSlGgVTaEDaBZHQJYcRT4tYjl1fZQoaAZoCWgPQwhWLekoBzpoQJSGlFKUaBVN6ANoFkdAlj1EaAFxGXV9lChoBmgJaA9DCBmsONVakWJAlIaUUpRoFU3oA2gWR0CWPWSIgvDhdX2UKGgGaAloD0MIhzO/moNKY0CUhpRSlGgVTegDaBZHQJY9j4XXRPZ1fZQoaAZoCWgPQwi0rzxIT0tFQJSGlFKUaBVLyWgWR0CWPgSUkfLcdX2UKGgGaAloD0MIbypSYexsbECUhpRSlGgVTWoBaBZHQJZArG8274B1fZQoaAZoCWgPQwjYne488aRkQJSGlFKUaBVN6ANoFkdAlkN2E9Mbm3V9lChoBmgJaA9DCNwsXiyMUmdAlIaUUpRoFU3oA2gWR0CWRt8fms/6dX2UKGgGaAloD0MISGx3D1DeYUCUhpRSlGgVTegDaBZHQJZG7lA/s3R1fZQoaAZoCWgPQwjy6hwDMmhkQJSGlFKUaBVN6ANoFkdAlk9A2VE/jnV9lChoBmgJaA9DCBuDTggdE19AlIaUUpRoFU3oA2gWR0CWUFyKNyYHdX2UKGgGaAloD0MINEsC1NTUZkCUhpRSlGgVTegDaBZHQJZWlcjZ+QV1fZQoaAZoCWgPQwjnps04DZRgQJSGlFKUaBVN6ANoFkdAllslQhwEQ3V9lChoBmgJaA9DCJLPK556QG9AlIaUUpRoFU3BAWgWR0CWYpqZc9nsdX2UKGgGaAloD0MILv62J0j1XUCUhpRSlGgVTegDaBZHQJZsMPEsJ6Z1fZQoaAZoCWgPQwhv8fCeg2FlQJSGlFKUaBVN6ANoFkdAlm4GuPmxMXV9lChoBmgJaA9DCHEBaJQu2mJAlIaUUpRoFU3oA2gWR0CWcW29+PRzdX2UKGgGaAloD0MIUmUYd4ORYECUhpRSlGgVTegDaBZHQJZ251DBuXN1fZQoaAZoCWgPQwgawjHLHghgQJSGlFKUaBVN6ANoFkdAlpQbXpW3jXV9lChoBmgJaA9DCOwS1VsD02NAlIaUUpRoFU3oA2gWR0CWlDwTufEodX2UKGgGaAloD0MI9pUH6akbZ0CUhpRSlGgVTegDaBZHQJaUbhFVktp1fZQoaAZoCWgPQwiXPJ6Wn1JxQJSGlFKUaBVNGAJoFkdAlpSR7mdRSHV9lChoBmgJaA9DCHqOyHepgGNAlIaUUpRoFU3oA2gWR0CWlOeWv8qGdX2UKGgGaAloD0MIqWis/Z2yXUCUhpRSlGgVTegDaBZHQJaX40P6KtR1fZQoaAZoCWgPQwivWpnwyxhiQJSGlFKUaBVN6ANoFkdAlpq0JKJ2uHV9lChoBmgJaA9DCB8tzhjm7WZAlIaUUpRoFU3oA2gWR0CWniTz/ZM+dX2UKGgGaAloD0MIObNdoQ/ZYUCUhpRSlGgVTegDaBZHQJapH655JK91fZQoaAZoCWgPQwjEzhQ6r7FjQJSGlFKUaBVN6ANoFkdAlqrfAO8TSXV9lChoBmgJaA9DCHY4ukr3P2hAlIaUUpRoFU3oA2gWR0CWut9pRGc4dX2UKGgGaAloD0MIj3Ba8KKOckCUhpRSlGgVTZkBaBZHQJa7H9m6Gxl1fZQoaAZoCWgPQwjbNSGt8SJxQJSGlFKUaBVNeAJoFkdAlsF1VxS5y3V9lChoBmgJaA9DCDoHz4Qm2W9AlIaUUpRoFU3fA2gWR0CWwkvllsgudX2UKGgGaAloD0MIX3tmSYAiZECUhpRSlGgVTegDaBZHQJbKwkmhM8J1fZQoaAZoCWgPQwi4H/DAAA1lQJSGlFKUaBVN6ANoFkdAlsws2eg+QnV9lChoBmgJaA9DCPZf56bNb1tAlIaUUpRoFU3oA2gWR0CWzr3EQ5FPdX2UKGgGaAloD0MI8GlOXuRXb0CUhpRSlGgVTUsDaBZHQJbPqoDPnjh1fZQoaAZoCWgPQwhaRX9o5p9sQJSGlFKUaBVNZANoFkdAltIYsAeaKHV9lChoBmgJaA9DCBX/d0SFm2FAlIaUUpRoFU3oA2gWR0CW0wy1uzhQdX2UKGgGaAloD0MIWcSwwxi4bUCUhpRSlGgVTT4DaBZHQJbTVEXtSht1fZQoaAZoCWgPQwgbR6zF541wQJSGlFKUaBVN4wJoFkdAltVlMEidKHV9lChoBmgJaA9DCEljtI6q52BAlIaUUpRoFU3oA2gWR0CW2JAksz2wdX2UKGgGaAloD0MIzeodbofwYECUhpRSlGgVTegDaBZHQJbY5TR6WxB1fZQoaAZoCWgPQwjSN2kalLlwQJSGlFKUaBVNpgJoFkdAlvalsDW9UXV9lChoBmgJaA9DCJASu7Z3V3FAlIaUUpRoFU1HAWgWR0CW/FHGS6lMdX2UKGgGaAloD0MI2SQ/4te9bkCUhpRSlGgVTQYBaBZHQJb8uFdszl91fZQoaAZoCWgPQwiE1O3sK/hxQJSGlFKUaBVNWgJoFkdAlwB6FM7EHnV9lChoBmgJaA9DCAualliZanBAlIaUUpRoFU3LAmgWR0CXAb4XoC+2dX2UKGgGaAloD0MIHF2luysWcUCUhpRSlGgVTdoCaBZHQJcCv5wfhdd1fZQoaAZoCWgPQwg8+IkDqG1wQJSGlFKUaBVNeQJoFkdAlwLmZRbbDnV9lChoBmgJaA9DCGByo8gabXBAlIaUUpRoFU2cA2gWR0CXAwF9KEnLdX2UKGgGaAloD0MI81Zdh2pDbkCUhpRSlGgVTcIBaBZHQJcIuOPvKEF1fZQoaAZoCWgPQwg0+PvFbH5rQJSGlFKUaBVNwwJoFkdAlw1I1He7+XV9lChoBmgJaA9DCAmmmllLmHFAlIaUUpRoFU0JAmgWR0CXE2Y2bXpXdX2UKGgGaAloD0MICLDIr59dckCUhpRSlGgVTe8BaBZHQJcZYK2KEWZ1fZQoaAZoCWgPQwjUDRR4J29vQJSGlFKUaBVNswJoFkdAlxtu76Hj63V9lChoBmgJaA9DCCsYldRJZHJAlIaUUpRoFU0lA2gWR0CXHDpJwsGxdX2UKGgGaAloD0MIeCY0SezzcUCUhpRSlGgVTaoDaBZHQJceYAyVObl1fZQoaAZoCWgPQwhp4bIKGxZjQJSGlFKUaBVN6ANoFkdAlydcEvCdjHV9lChoBmgJaA9DCIGv6NZr6WFAlIaUUpRoFU3oA2gWR0CXKisFMZgpdX2UKGgGaAloD0MIIZT3cTSoX0CUhpRSlGgVTegDaBZHQJczRpcophF1fZQoaAZoCWgPQwghrweTonpwQJSGlFKUaBVNzAFoFkdAlzScgQpWm3V9lChoBmgJaA9DCI9wWvBiYXBAlIaUUpRoFU0zA2gWR0CXS6mCyyD7dX2UKGgGaAloD0MIldi1vV25bkCUhpRSlGgVTQoDaBZHQJdLqqIacZt1fZQoaAZoCWgPQwjwMsNGWQtsQJSGlFKUaBVNgwNoFkdAl0v1g6U7jnV9lChoBmgJaA9DCERSCyUTUnBAlIaUUpRoFU0FA2gWR0CXUViRnvlVdX2UKGgGaAloD0MIoYFYNrPhcUCUhpRSlGgVTTgBaBZHQJdSm2gFotd1fZQoaAZoCWgPQwgwuycPCwNtQJSGlFKUaBVN1gFoFkdAl1Lac3EQ5HV9lChoBmgJaA9DCBjNyvZhUHFAlIaUUpRoFU2iA2gWR0CXUy/NJOFhdX2UKGgGaAloD0MIZw+0AgMCcUCUhpRSlGgVTcQDaBZHQJdUZwsGxD91fZQoaAZoCWgPQwguAI3SJe1jQJSGlFKUaBVN6ANoFkdAl1T9SqEOAnV9lChoBmgJaA9DCNNOzeXG/3BAlIaUUpRoFU23AWgWR0CXVjF8XvYwdX2UKGgGaAloD0MInbgcr0CTcUCUhpRSlGgVTR0BaBZHQJdYYz544ZN1fZQoaAZoCWgPQwgbhSSzOjJwQJSGlFKUaBVN7wJoFkdAl1xy9EkSmXV9lChoBmgJaA9DCJqzPuWYymZAlIaUUpRoFU3oA2gWR0CXYPsmOU+tdX2UKGgGaAloD0MII6DCEaSqIUCUhpRSlGgVS8xoFkdAl2HnQMQVbnV9lChoBmgJaA9DCDFETl/PKW5AlIaUUpRoFU09AWgWR0CXY0wHJLdvdX2UKGgGaAloD0MISUikbXyyckCUhpRSlGgVTWoBaBZHQJdmzoRqXWx1fZQoaAZoCWgPQwg6I0p7A4JuQJSGlFKUaBVNNAFoFkdAl2bffsNUfnV9lChoBmgJaA9DCISCUrRygnFAlIaUUpRoFU12AWgWR0CXajs052hadX2UKGgGaAloD0MIG5yIfm0rcECUhpRSlGgVTWQCaBZHQJdqjd30PH11fZQoaAZoCWgPQwipTDEHQZVvQJSGlFKUaBVNzgFoFkdAl2sR1klNUXV9lChoBmgJaA9DCKw6qwU2R3FAlIaUUpRoFU3WAWgWR0CXbfXpGFzudX2UKGgGaAloD0MI7G0zFaKCckCUhpRSlGgVTZMCaBZHQJdufLcKw6h1fZQoaAZoCWgPQwjYKyy4HxNfQJSGlFKUaBVN6ANoFkdAl26OO801qHV9lChoBmgJaA9DCHzxRXu8QmJAlIaUUpRoFU3oA2gWR0CXbvUwi7kGdX2UKGgGaAloD0MInKiluZX5bUCUhpRSlGgVTSUBaBZHQJdxth9b5dp1fZQoaAZoCWgPQwjHEtbG2CxvQJSGlFKUaBVNBgNoFkdAl3NyFCb+cnV9lChoBmgJaA9DCBoaTwTxs3FAlIaUUpRoFU2pAWgWR0CXc+gDifg8dX2UKGgGaAloD0MIraHUXgS6cUCUhpRSlGgVTV4BaBZHQJd0+S3b2151fZQoaAZoCWgPQwhqFJLM6kpuQJSGlFKUaBVNBQFoFkdAl3Xe7QLNOnV9lChoBmgJaA9DCBqLprMTdm5AlIaUUpRoFU09AWgWR0CXdd+AEt/XdX2UKGgGaAloD0MI9Z81P757cUCUhpRSlGgVTZUBaBZHQJd1+u5jH4p1fZQoaAZoCWgPQwjyecVTDx5xQJSGlFKUaBVNBAFoFkdAl3lFwDNhVnV9lChoBmgJaA9DCGozTkNUpHBAlIaUUpRoFU1lAWgWR0CXelBSDRMOdX2UKGgGaAloD0MIgUHSp9W4ZkCUhpRSlGgVTegDaBZHQJd+pY8uBc11fZQoaAZoCWgPQwhcrn5s0kRwQJSGlFKUaBVNeQFoFkdAl37Mtf5ULnVlLg=="
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 248,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:34283fc0c90c20a0cb2d284fc669dc06656baf41cafca0bc463b5e9b19a2bf30
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:083badc460c8bfe041e19e756895a921a0707bbaa24d2c74792c4cb267870b5c
|
3 |
+
size 43393
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (213 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 252.10951860582546, "std_reward": 22.87920984331929, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-09T16:50:22.725036"}
|