stinoco commited on
Commit
64c188b
1 Parent(s): 1f693d1

Adding PPO model for solving LunarLander-v2

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 265.02 +/- 11.96
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f813a229040>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f813a2290d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f813a229160>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f813a2291f0>", "_build": "<function ActorCriticPolicy._build at 0x7f813a229280>", "forward": "<function ActorCriticPolicy.forward at 0x7f813a229310>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f813a2293a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f813a229430>", "_predict": "<function ActorCriticPolicy._predict at 0x7f813a2294c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f813a229550>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f813a2295e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f813a229670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f813a2a1780>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675174625368374672, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABqZLr0UVJu64lGLsgyeejB7H3u6CjMEMwAAgD8AAIA/2jeBPfQxjT2FLKu9XXeGvuVNOr0mjXI9AAAAAAAAAADNIF09E6hdP8KdAj3cbZe+KQthPTxkrrwAAAAAAAAAAACiATx7jIm6niUpuLybHLN3beq6gcZENwAAgD8AAIA/JpMivlc/Wzx1lIA98Z8MvNW08L3MSAk9AACAPwAAgD/m/Sa99kA7ui8BTLMmBvGvDuweu6eEvzMAAIA/AACAPx0ikj5pbzw/kKjFvU4ydL7Gv5A9oUG2vQAAAAAAAAAAE6sOPnvLgz93MkQ+wXdqvrtJgT7glww9AAAAAAAAAABAAPy9cekIu093MjmEDX02FgUTPLsuZLgAAIA/AAAAAE1RmL3X8wm553GHuuv9Gra1bcs63KWhOQAAAAAAAAAAAPxXvFJTmz9PsKW8vwOhvqf8RDwpETI9AAAAAAAAAAAuxIO+L3rgPvqGLj0Bk5W+GfvFvTnfEr0AAAAAAAAAANos7z2G+pQ/2uItPnGwj76prUw+yzTcPAAAAAAAAAAAGrAAvXHCdLsr0S88Y8eKPFYTm7zOPG49AACAPwAAgD/4mIO+0x3nPisN0z38CoK+I797vV1MOD0AAAAAAAAAABqBNb0WNwY9PAaTPUeegL4CKC88tpCxuwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIMX4a9+ZHY0CUhpRSlIwBbJRN6AOMAXSUR0CRRD2vjfeldX2UKGgGaAloD0MIArwFEhRpckCUhpRSlGgVTWYBaBZHQJFFJWPtD2J1fZQoaAZoCWgPQwg2dR4VP05xQJSGlFKUaBVNrgFoFkdAkUV1nyup0nV9lChoBmgJaA9DCH6P+usVVG9AlIaUUpRoFU1dAWgWR0CRR0z8xbjcdX2UKGgGaAloD0MIxlG5idoXcUCUhpRSlGgVTSACaBZHQJFHTtRekYZ1fZQoaAZoCWgPQwheZ0P+mRBwQJSGlFKUaBVNEwNoFkdAkUfcn/kvK3V9lChoBmgJaA9DCH+ismFNDWxAlIaUUpRoFU0qAmgWR0CRR94I8hcJdX2UKGgGaAloD0MIAOZatADibECUhpRSlGgVTa8BaBZHQJFJTuiN83N1fZQoaAZoCWgPQwhbYfpeA7dwQJSGlFKUaBVNXgJoFkdAkUlYJZ4fOnV9lChoBmgJaA9DCFeYvteQ93FAlIaUUpRoFU3MAWgWR0CRS9QvpQk5dX2UKGgGaAloD0MI51QyAJTmcUCUhpRSlGgVTXoBaBZHQJFQ/rSmZVp1fZQoaAZoCWgPQwjzAuyj02dwQJSGlFKUaBVNPAFoFkdAkVFU3Kji43V9lChoBmgJaA9DCBOdZRahJEZAlIaUUpRoFUv2aBZHQJFR7EtNBWx1fZQoaAZoCWgPQwgjTbwDPLRcQJSGlFKUaBVN6ANoFkdAkVNYDYAbQ3V9lChoBmgJaA9DCL1TAff8DnJAlIaUUpRoFU2IAWgWR0CRW8J1JUYLdX2UKGgGaAloD0MIza/mAEEFcUCUhpRSlGgVTRkCaBZHQJFeE5bQkX11fZQoaAZoCWgPQwjs3/WZs59vQJSGlFKUaBVNRQFoFkdAkWUCQcPvrnV9lChoBmgJaA9DCJbqAl7mSHBAlIaUUpRoFU1YAmgWR0CRZREa2nbZdX2UKGgGaAloD0MIQlpj0AkBcUCUhpRSlGgVTZcDaBZHQJFpYW9DhLp1fZQoaAZoCWgPQwiF0hdCTnFvQJSGlFKUaBVNygJoFkdAkWpW1UlzEXV9lChoBmgJaA9DCJ1/u+zXh2VAlIaUUpRoFU3oA2gWR0CRbKzAeq7zdX2UKGgGaAloD0MI6Po+HGQacUCUhpRSlGgVTfwCaBZHQJFsu19fCyh1fZQoaAZoCWgPQwiH4LiMmx9yQJSGlFKUaBVNFQJoFkdAkW0wwTM7l3V9lChoBmgJaA9DCJcC0v6HoWVAlIaUUpRoFU3oA2gWR0CRbtsmfGuLdX2UKGgGaAloD0MIfVwbKkaAZkCUhpRSlGgVTegDaBZHQJFwkW43FUB1fZQoaAZoCWgPQwjB49u7Bi9mQJSGlFKUaBVN6ANoFkdAkYgeuNgjQnV9lChoBmgJaA9DCJvniHzXl3FAlIaUUpRoFU2IA2gWR0CRiCCjUNKAdX2UKGgGaAloD0MI4dIx55l9b0CUhpRSlGgVTb8CaBZHQJGIX92ovSN1fZQoaAZoCWgPQwib/1cdudxwQJSGlFKUaBVNUgNoFkdAkYjoUN8VpXV9lChoBmgJaA9DCM3pspjYM3BAlIaUUpRoFU0tAWgWR0CRifUrTYukdX2UKGgGaAloD0MI41Eq4cmTcECUhpRSlGgVTY4BaBZHQJGKjqkdmxt1fZQoaAZoCWgPQwj9g0iGXMtwQJSGlFKUaBVNKgFoFkdAkYqY9X9zfnV9lChoBmgJaA9DCDsYsU+AZXBAlIaUUpRoFU0SAmgWR0CRis+6y0KJdX2UKGgGaAloD0MI/8wgPjDucECUhpRSlGgVTWgCaBZHQJGMX1CgK4R1fZQoaAZoCWgPQwhd+pekMoBwQJSGlFKUaBVNSgFoFkdAkY1hyS3b23V9lChoBmgJaA9DCHtntFVJgnBAlIaUUpRoFU2jAWgWR0CRkPYe1a4ddX2UKGgGaAloD0MI6iKFsvAqbECUhpRSlGgVTY4BaBZHQJGSKFYdQwd1fZQoaAZoCWgPQwgwnkFD/wBlQJSGlFKUaBVN6ANoFkdAkZQJW3jMmnV9lChoBmgJaA9DCLQevkzUWXFAlIaUUpRoFU0qAWgWR0CRlTPxx1gZdX2UKGgGaAloD0MIA+yjU9fNbUCUhpRSlGgVTToBaBZHQJGVcrf+CK91fZQoaAZoCWgPQwgyOEpenTdNQJSGlFKUaBVL5GgWR0CRlhpm29csdX2UKGgGaAloD0MIw50LI71DcUCUhpRSlGgVTT0BaBZHQJGXJRgqmTF1fZQoaAZoCWgPQwjNctnonLhuQJSGlFKUaBVNNQJoFkdAkZhclXzUZ3V9lChoBmgJaA9DCH3p7c9FMXFAlIaUUpRoFU1CAWgWR0CRmGeWfK6ndX2UKGgGaAloD0MI2ILeG0NXbECUhpRSlGgVTX4BaBZHQJGatzU7SzB1fZQoaAZoCWgPQwg5RUdyObZwQJSGlFKUaBVNywFoFkdAkZuvnGKhtnV9lChoBmgJaA9DCP9BJEPOOXFAlIaUUpRoFU1SAmgWR0CRnMXOnl4kdX2UKGgGaAloD0MIZrtCH6zCa0CUhpRSlGgVTcMBaBZHQJGdmuV5a/11fZQoaAZoCWgPQwgrvwzGCDlxQJSGlFKUaBVNjwFoFkdAkZ7H1e0G/3V9lChoBmgJaA9DCBReglPfx3BAlIaUUpRoFU15A2gWR0CRnzAKv3ajdX2UKGgGaAloD0MIBitOtVYHcUCUhpRSlGgVTToBaBZHQJGjTl2eQMh1fZQoaAZoCWgPQwhrZcIv9TRxQJSGlFKUaBVNdAFoFkdAkaUfszEaVHV9lChoBmgJaA9DCAGiYMZURXJAlIaUUpRoFU3BAWgWR0CRpctkWhysdX2UKGgGaAloD0MIsK4K1GI7bkCUhpRSlGgVTUsBaBZHQJGmbi1iONp1fZQoaAZoCWgPQwhZTdcTXa5wQJSGlFKUaBVNbgFoFkdAkabVbzK9wnV9lChoBmgJaA9DCFMI5BJHcXBAlIaUUpRoFU2FAmgWR0CRrZuyeI2wdX2UKGgGaAloD0MIeVioNU2vbkCUhpRSlGgVTZ4BaBZHQJGtwRXfZVZ1fZQoaAZoCWgPQwhSKAtf3/9wQJSGlFKUaBVN9QFoFkdAka4rTUiIL3V9lChoBmgJaA9DCAM+P4wQ/W9AlIaUUpRoFU3gAWgWR0CRr60rsjVydX2UKGgGaAloD0MIcM/zp42ObUCUhpRSlGgVTXcCaBZHQJGv48r7O3V1fZQoaAZoCWgPQwhaSMDocjVwQJSGlFKUaBVNiwFoFkdAkbCkNWluWXV9lChoBmgJaA9DCCEHJcw0XXFAlIaUUpRoFU3rAWgWR0CRsiGKAJ9idX2UKGgGaAloD0MI8l1KXTK3ZUCUhpRSlGgVTegDaBZHQJGzHt5UtI11fZQoaAZoCWgPQwg7pu7K7gpwQJSGlFKUaBVNLQFoFkdAkbOpg9eQdXV9lChoBmgJaA9DCL9DUaBPp29AlIaUUpRoFU0KAmgWR0CRxrLuQZGbdX2UKGgGaAloD0MIGCe+2tGFcECUhpRSlGgVTU8BaBZHQJHHDI6r/851fZQoaAZoCWgPQwg1s5YCUrZsQJSGlFKUaBVNQQFoFkdAkcdS5Etuk3V9lChoBmgJaA9DCDawVYJFWG9AlIaUUpRoFU2VAWgWR0CRx5ipvP1MdX2UKGgGaAloD0MIIxXGFoIsSECUhpRSlGgVS/ZoFkdAkcmZjQRf4XV9lChoBmgJaA9DCG05l+KqtjFAlIaUUpRoFUvVaBZHQJHKCD28IzF1fZQoaAZoCWgPQwgly0kofRE7QJSGlFKUaBVL92gWR0CRygev6j33dX2UKGgGaAloD0MIovDZOrijcUCUhpRSlGgVTaoDaBZHQJHO57zCk451fZQoaAZoCWgPQwgei21S0SNwQJSGlFKUaBVNhgFoFkdAkc8uscQyynV9lChoBmgJaA9DCFpG6j2VZXFAlIaUUpRoFU0vAWgWR0CRz8wWnCO4dX2UKGgGaAloD0MInE6y1WXPcUCUhpRSlGgVTTwBaBZHQJHSby08eS11fZQoaAZoCWgPQwiQL6GCw85vQJSGlFKUaBVNagFoFkdAkdNgZsKsuHV9lChoBmgJaA9DCP1P/u4dsW9AlIaUUpRoFU1bAWgWR0CR1DnCfpUxdX2UKGgGaAloD0MIc0nVdpOCckCUhpRSlGgVTVkBaBZHQJHUddSl3yJ1fZQoaAZoCWgPQwiez4B6s3BuQJSGlFKUaBVNfAFoFkdAkdYZSNwR5HV9lChoBmgJaA9DCBctQNtqPGBAlIaUUpRoFU3oA2gWR0CR2l8OTaCddX2UKGgGaAloD0MIFhbcD7hocUCUhpRSlGgVTUUBaBZHQJHc0Tzundh1fZQoaAZoCWgPQwj83qY/+xtJQJSGlFKUaBVL3GgWR0CR3XBpHqeLdX2UKGgGaAloD0MI9+XMdoUDc0CUhpRSlGgVTUcBaBZHQJHdncJtzjp1fZQoaAZoCWgPQwgIclDCTGxvQJSGlFKUaBVNYQFoFkdAkd3OD8LronV9lChoBmgJaA9DCK65o/9lTWxAlIaUUpRoFU0XAWgWR0CR3j7f51vEdX2UKGgGaAloD0MIlQuVf+0LcUCUhpRSlGgVTcYCaBZHQJHeoNy5qdp1fZQoaAZoCWgPQwhPXI5X4PNwQJSGlFKUaBVNDQFoFkdAkd6hSLqD9XV9lChoBmgJaA9DCL9EvHV+imNAlIaUUpRoFU3oA2gWR0CR4JkOZssQdX2UKGgGaAloD0MIueNNfotnbkCUhpRSlGgVTS4BaBZHQJHiam4y44J1fZQoaAZoCWgPQwgpl8YvPJBuQJSGlFKUaBVNjgFoFkdAkeRbiIcin3V9lChoBmgJaA9DCOAUViroWHFAlIaUUpRoFU2hAmgWR0CR5Hgv114gdX2UKGgGaAloD0MICoMyjWYFcUCUhpRSlGgVTaQCaBZHQJHlDSy+pOx1fZQoaAZoCWgPQwjy0He3srZxQJSGlFKUaBVNJwFoFkdAkeXkIPbwjXV9lChoBmgJaA9DCMUgsHLo+29AlIaUUpRoFU06AWgWR0CR6Z95Qgs9dX2UKGgGaAloD0MIYOrnTUV6bUCUhpRSlGgVTTcBaBZHQJHprPiT+vR1fZQoaAZoCWgPQwg+0AoM2bFlQJSGlFKUaBVN6ANoFkdAkeqLOqvNeXV9lChoBmgJaA9DCGSxTSoaX3BAlIaUUpRoFU1aAWgWR0CR68B2OhkBdX2UKGgGaAloD0MI4IRCBBy+cECUhpRSlGgVTdcDaBZHQJHs+4mTkhl1fZQoaAZoCWgPQwiRtvEn6lJwQJSGlFKUaBVNOwFoFkdAke0iU9pyqHV9lChoBmgJaA9DCP0RhgGLhXFAlIaUUpRoFU0XAWgWR0CR7YzPa+N+dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
first_PPO.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8864f0d1b1ec5db7a64a3877382a01548d48fba2c78c649645ae93ea5a4b41a5
3
+ size 147416
first_PPO/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
first_PPO/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f813a229040>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f813a2290d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f813a229160>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f813a2291f0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f813a229280>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f813a229310>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f813a2293a0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f813a229430>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f813a2294c0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f813a229550>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f813a2295e0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f813a229670>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f813a2a1780>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1675174625368374672,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABqZLr0UVJu64lGLsgyeejB7H3u6CjMEMwAAgD8AAIA/2jeBPfQxjT2FLKu9XXeGvuVNOr0mjXI9AAAAAAAAAADNIF09E6hdP8KdAj3cbZe+KQthPTxkrrwAAAAAAAAAAACiATx7jIm6niUpuLybHLN3beq6gcZENwAAgD8AAIA/JpMivlc/Wzx1lIA98Z8MvNW08L3MSAk9AACAPwAAgD/m/Sa99kA7ui8BTLMmBvGvDuweu6eEvzMAAIA/AACAPx0ikj5pbzw/kKjFvU4ydL7Gv5A9oUG2vQAAAAAAAAAAE6sOPnvLgz93MkQ+wXdqvrtJgT7glww9AAAAAAAAAABAAPy9cekIu093MjmEDX02FgUTPLsuZLgAAIA/AAAAAE1RmL3X8wm553GHuuv9Gra1bcs63KWhOQAAAAAAAAAAAPxXvFJTmz9PsKW8vwOhvqf8RDwpETI9AAAAAAAAAAAuxIO+L3rgPvqGLj0Bk5W+GfvFvTnfEr0AAAAAAAAAANos7z2G+pQ/2uItPnGwj76prUw+yzTcPAAAAAAAAAAAGrAAvXHCdLsr0S88Y8eKPFYTm7zOPG49AACAPwAAgD/4mIO+0x3nPisN0z38CoK+I797vV1MOD0AAAAAAAAAABqBNb0WNwY9PAaTPUeegL4CKC88tpCxuwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIMX4a9+ZHY0CUhpRSlIwBbJRN6AOMAXSUR0CRRD2vjfeldX2UKGgGaAloD0MIArwFEhRpckCUhpRSlGgVTWYBaBZHQJFFJWPtD2J1fZQoaAZoCWgPQwg2dR4VP05xQJSGlFKUaBVNrgFoFkdAkUV1nyup0nV9lChoBmgJaA9DCH6P+usVVG9AlIaUUpRoFU1dAWgWR0CRR0z8xbjcdX2UKGgGaAloD0MIxlG5idoXcUCUhpRSlGgVTSACaBZHQJFHTtRekYZ1fZQoaAZoCWgPQwheZ0P+mRBwQJSGlFKUaBVNEwNoFkdAkUfcn/kvK3V9lChoBmgJaA9DCH+ismFNDWxAlIaUUpRoFU0qAmgWR0CRR94I8hcJdX2UKGgGaAloD0MIAOZatADibECUhpRSlGgVTa8BaBZHQJFJTuiN83N1fZQoaAZoCWgPQwhbYfpeA7dwQJSGlFKUaBVNXgJoFkdAkUlYJZ4fOnV9lChoBmgJaA9DCFeYvteQ93FAlIaUUpRoFU3MAWgWR0CRS9QvpQk5dX2UKGgGaAloD0MI51QyAJTmcUCUhpRSlGgVTXoBaBZHQJFQ/rSmZVp1fZQoaAZoCWgPQwjzAuyj02dwQJSGlFKUaBVNPAFoFkdAkVFU3Kji43V9lChoBmgJaA9DCBOdZRahJEZAlIaUUpRoFUv2aBZHQJFR7EtNBWx1fZQoaAZoCWgPQwgjTbwDPLRcQJSGlFKUaBVN6ANoFkdAkVNYDYAbQ3V9lChoBmgJaA9DCL1TAff8DnJAlIaUUpRoFU2IAWgWR0CRW8J1JUYLdX2UKGgGaAloD0MIza/mAEEFcUCUhpRSlGgVTRkCaBZHQJFeE5bQkX11fZQoaAZoCWgPQwjs3/WZs59vQJSGlFKUaBVNRQFoFkdAkWUCQcPvrnV9lChoBmgJaA9DCJbqAl7mSHBAlIaUUpRoFU1YAmgWR0CRZREa2nbZdX2UKGgGaAloD0MIQlpj0AkBcUCUhpRSlGgVTZcDaBZHQJFpYW9DhLp1fZQoaAZoCWgPQwiF0hdCTnFvQJSGlFKUaBVNygJoFkdAkWpW1UlzEXV9lChoBmgJaA9DCJ1/u+zXh2VAlIaUUpRoFU3oA2gWR0CRbKzAeq7zdX2UKGgGaAloD0MI6Po+HGQacUCUhpRSlGgVTfwCaBZHQJFsu19fCyh1fZQoaAZoCWgPQwiH4LiMmx9yQJSGlFKUaBVNFQJoFkdAkW0wwTM7l3V9lChoBmgJaA9DCJcC0v6HoWVAlIaUUpRoFU3oA2gWR0CRbtsmfGuLdX2UKGgGaAloD0MIfVwbKkaAZkCUhpRSlGgVTegDaBZHQJFwkW43FUB1fZQoaAZoCWgPQwjB49u7Bi9mQJSGlFKUaBVN6ANoFkdAkYgeuNgjQnV9lChoBmgJaA9DCJvniHzXl3FAlIaUUpRoFU2IA2gWR0CRiCCjUNKAdX2UKGgGaAloD0MI4dIx55l9b0CUhpRSlGgVTb8CaBZHQJGIX92ovSN1fZQoaAZoCWgPQwib/1cdudxwQJSGlFKUaBVNUgNoFkdAkYjoUN8VpXV9lChoBmgJaA9DCM3pspjYM3BAlIaUUpRoFU0tAWgWR0CRifUrTYukdX2UKGgGaAloD0MI41Eq4cmTcECUhpRSlGgVTY4BaBZHQJGKjqkdmxt1fZQoaAZoCWgPQwj9g0iGXMtwQJSGlFKUaBVNKgFoFkdAkYqY9X9zfnV9lChoBmgJaA9DCDsYsU+AZXBAlIaUUpRoFU0SAmgWR0CRis+6y0KJdX2UKGgGaAloD0MI/8wgPjDucECUhpRSlGgVTWgCaBZHQJGMX1CgK4R1fZQoaAZoCWgPQwhd+pekMoBwQJSGlFKUaBVNSgFoFkdAkY1hyS3b23V9lChoBmgJaA9DCHtntFVJgnBAlIaUUpRoFU2jAWgWR0CRkPYe1a4ddX2UKGgGaAloD0MI6iKFsvAqbECUhpRSlGgVTY4BaBZHQJGSKFYdQwd1fZQoaAZoCWgPQwgwnkFD/wBlQJSGlFKUaBVN6ANoFkdAkZQJW3jMmnV9lChoBmgJaA9DCLQevkzUWXFAlIaUUpRoFU0qAWgWR0CRlTPxx1gZdX2UKGgGaAloD0MIA+yjU9fNbUCUhpRSlGgVTToBaBZHQJGVcrf+CK91fZQoaAZoCWgPQwgyOEpenTdNQJSGlFKUaBVL5GgWR0CRlhpm29csdX2UKGgGaAloD0MIw50LI71DcUCUhpRSlGgVTT0BaBZHQJGXJRgqmTF1fZQoaAZoCWgPQwjNctnonLhuQJSGlFKUaBVNNQJoFkdAkZhclXzUZ3V9lChoBmgJaA9DCH3p7c9FMXFAlIaUUpRoFU1CAWgWR0CRmGeWfK6ndX2UKGgGaAloD0MI2ILeG0NXbECUhpRSlGgVTX4BaBZHQJGatzU7SzB1fZQoaAZoCWgPQwg5RUdyObZwQJSGlFKUaBVNywFoFkdAkZuvnGKhtnV9lChoBmgJaA9DCP9BJEPOOXFAlIaUUpRoFU1SAmgWR0CRnMXOnl4kdX2UKGgGaAloD0MIZrtCH6zCa0CUhpRSlGgVTcMBaBZHQJGdmuV5a/11fZQoaAZoCWgPQwgrvwzGCDlxQJSGlFKUaBVNjwFoFkdAkZ7H1e0G/3V9lChoBmgJaA9DCBReglPfx3BAlIaUUpRoFU15A2gWR0CRnzAKv3ajdX2UKGgGaAloD0MIBitOtVYHcUCUhpRSlGgVTToBaBZHQJGjTl2eQMh1fZQoaAZoCWgPQwhrZcIv9TRxQJSGlFKUaBVNdAFoFkdAkaUfszEaVHV9lChoBmgJaA9DCAGiYMZURXJAlIaUUpRoFU3BAWgWR0CRpctkWhysdX2UKGgGaAloD0MIsK4K1GI7bkCUhpRSlGgVTUsBaBZHQJGmbi1iONp1fZQoaAZoCWgPQwhZTdcTXa5wQJSGlFKUaBVNbgFoFkdAkabVbzK9wnV9lChoBmgJaA9DCFMI5BJHcXBAlIaUUpRoFU2FAmgWR0CRrZuyeI2wdX2UKGgGaAloD0MIeVioNU2vbkCUhpRSlGgVTZ4BaBZHQJGtwRXfZVZ1fZQoaAZoCWgPQwhSKAtf3/9wQJSGlFKUaBVN9QFoFkdAka4rTUiIL3V9lChoBmgJaA9DCAM+P4wQ/W9AlIaUUpRoFU3gAWgWR0CRr60rsjVydX2UKGgGaAloD0MIcM/zp42ObUCUhpRSlGgVTXcCaBZHQJGv48r7O3V1fZQoaAZoCWgPQwhaSMDocjVwQJSGlFKUaBVNiwFoFkdAkbCkNWluWXV9lChoBmgJaA9DCCEHJcw0XXFAlIaUUpRoFU3rAWgWR0CRsiGKAJ9idX2UKGgGaAloD0MI8l1KXTK3ZUCUhpRSlGgVTegDaBZHQJGzHt5UtI11fZQoaAZoCWgPQwg7pu7K7gpwQJSGlFKUaBVNLQFoFkdAkbOpg9eQdXV9lChoBmgJaA9DCL9DUaBPp29AlIaUUpRoFU0KAmgWR0CRxrLuQZGbdX2UKGgGaAloD0MIGCe+2tGFcECUhpRSlGgVTU8BaBZHQJHHDI6r/851fZQoaAZoCWgPQwg1s5YCUrZsQJSGlFKUaBVNQQFoFkdAkcdS5Etuk3V9lChoBmgJaA9DCDawVYJFWG9AlIaUUpRoFU2VAWgWR0CRx5ipvP1MdX2UKGgGaAloD0MIIxXGFoIsSECUhpRSlGgVS/ZoFkdAkcmZjQRf4XV9lChoBmgJaA9DCG05l+KqtjFAlIaUUpRoFUvVaBZHQJHKCD28IzF1fZQoaAZoCWgPQwgly0kofRE7QJSGlFKUaBVL92gWR0CRygev6j33dX2UKGgGaAloD0MIovDZOrijcUCUhpRSlGgVTaoDaBZHQJHO57zCk451fZQoaAZoCWgPQwgei21S0SNwQJSGlFKUaBVNhgFoFkdAkc8uscQyynV9lChoBmgJaA9DCFpG6j2VZXFAlIaUUpRoFU0vAWgWR0CRz8wWnCO4dX2UKGgGaAloD0MInE6y1WXPcUCUhpRSlGgVTTwBaBZHQJHSby08eS11fZQoaAZoCWgPQwiQL6GCw85vQJSGlFKUaBVNagFoFkdAkdNgZsKsuHV9lChoBmgJaA9DCP1P/u4dsW9AlIaUUpRoFU1bAWgWR0CR1DnCfpUxdX2UKGgGaAloD0MIc0nVdpOCckCUhpRSlGgVTVkBaBZHQJHUddSl3yJ1fZQoaAZoCWgPQwiez4B6s3BuQJSGlFKUaBVNfAFoFkdAkdYZSNwR5HV9lChoBmgJaA9DCBctQNtqPGBAlIaUUpRoFU3oA2gWR0CR2l8OTaCddX2UKGgGaAloD0MIFhbcD7hocUCUhpRSlGgVTUUBaBZHQJHc0Tzundh1fZQoaAZoCWgPQwj83qY/+xtJQJSGlFKUaBVL3GgWR0CR3XBpHqeLdX2UKGgGaAloD0MI9+XMdoUDc0CUhpRSlGgVTUcBaBZHQJHdncJtzjp1fZQoaAZoCWgPQwgIclDCTGxvQJSGlFKUaBVNYQFoFkdAkd3OD8LronV9lChoBmgJaA9DCK65o/9lTWxAlIaUUpRoFU0XAWgWR0CR3j7f51vEdX2UKGgGaAloD0MIlQuVf+0LcUCUhpRSlGgVTcYCaBZHQJHeoNy5qdp1fZQoaAZoCWgPQwhPXI5X4PNwQJSGlFKUaBVNDQFoFkdAkd6hSLqD9XV9lChoBmgJaA9DCL9EvHV+imNAlIaUUpRoFU3oA2gWR0CR4JkOZssQdX2UKGgGaAloD0MIueNNfotnbkCUhpRSlGgVTS4BaBZHQJHiam4y44J1fZQoaAZoCWgPQwgpl8YvPJBuQJSGlFKUaBVNjgFoFkdAkeRbiIcin3V9lChoBmgJaA9DCOAUViroWHFAlIaUUpRoFU2hAmgWR0CR5Hgv114gdX2UKGgGaAloD0MICoMyjWYFcUCUhpRSlGgVTaQCaBZHQJHlDSy+pOx1fZQoaAZoCWgPQwjy0He3srZxQJSGlFKUaBVNJwFoFkdAkeXkIPbwjXV9lChoBmgJaA9DCMUgsHLo+29AlIaUUpRoFU06AWgWR0CR6Z95Qgs9dX2UKGgGaAloD0MIYOrnTUV6bUCUhpRSlGgVTTcBaBZHQJHprPiT+vR1fZQoaAZoCWgPQwg+0AoM2bFlQJSGlFKUaBVN6ANoFkdAkeqLOqvNeXV9lChoBmgJaA9DCGSxTSoaX3BAlIaUUpRoFU1aAWgWR0CR68B2OhkBdX2UKGgGaAloD0MI4IRCBBy+cECUhpRSlGgVTdcDaBZHQJHs+4mTkhl1fZQoaAZoCWgPQwiRtvEn6lJwQJSGlFKUaBVNOwFoFkdAke0iU9pyqHV9lChoBmgJaA9DCP0RhgGLhXFAlIaUUpRoFU0XAWgWR0CR7YzPa+N+dWUu"
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
first_PPO/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:77d968bb1663472f97c7438248d3545d6f36accc9f0beb15215ae1bd41f82dc6
3
+ size 87929
first_PPO/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:565ec92074c3c2242b5a34c1b0ccf86d5c5180575441f12a4eac61ad4d8df402
3
+ size 43393
first_PPO/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
first_PPO/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (149 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 265.01921235961925, "std_reward": 11.962475335301292, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-31T14:36:44.661972"}