stochastic
commited on
Commit
•
91b1c14
1
Parent(s):
a69aaee
trying out clip
Browse files- README.md +1 -1
- config.json +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
- second_rl_ppo_model.zip +2 -2
- second_rl_ppo_model/data +9 -9
- second_rl_ppo_model/policy.optimizer.pth +1 -1
- second_rl_ppo_model/policy.pth +1 -1
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value:
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: -66.86 +/- 139.53
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f900ce4ed40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f900ce4edd0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f900ce4ee60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f900ce4eef0>", "_build": "<function ActorCriticPolicy._build at 0x7f900ce4ef80>", "forward": "<function ActorCriticPolicy.forward at 0x7f900ce53050>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f900ce530e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f900ce53170>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f900ce53200>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f900ce53290>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f900ce53320>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f900ce21600>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 262144, "_total_timesteps": 250000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1653321097.9959404, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAjTcgPsxnqD8Txm8+vgNBvZSKuD4kO5M+AAAAAAAAAADmOTA90I64P9JkxT5hvos8iyYQPTvVcD4AAAAAAAAAAABV0j3h8IG6c4jaO9LKFDaATM86oEULNQAAgD8AAAAApqd9vkUj5zySKU08isaHuh9Bf77G5Jw7AACAPwAAgD8agBC9wn+MP3VMHL3pLUy8USgPv95bAL8AAAAAAAAAADPKWz5Hvvw+9IgQP4Ulx76vcGg+MLcoPwAAAAAAAAAAU9Ixvi67yjsP58U6QlJcuCeEVr2qieq5AACAPwAAgD9AlMc9uNbnuRKalzv1uS01Ah/HOsvsNDQAAIA/AAAAADP+RL4wKLg/VZ/jvWPJYTp2hDa/YtUfvwAAAAAAAAAAgHFOPpWQOj8dPpy9bC+uvgnYZz/e9Ss9AAAAAAAAAADtxRK+8Ii5P4b0v77RjJO8+q+UvlAm/b4AAAAAAAAAAE2EDT3FKK8/JuUpPiAjlj0UJJi95+42PQAAAAAAAAAAXe2VPgLoiT/qVF890jw/vvSCOT+Jn7E+AAAAAAAAAACtWgU+nGo5PyBjB7/uvnu+QkdEupAL7L4AAAAAAAAAABMAWT4wqps/25wJvuSRrL79qlo/fBqqvQAAAAAAAAAAzSozvbAZqz9dIVG+7Mj/vajMbz2/Aqc6AAAAAAAAAACUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVLhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMILhwIyYK1asCUhpRSlIwBbJRL04wBdJRHQIoJAM2FWXF1fZQoaAZoCWgPQwjdlsgFZzVTwJSGlFKUaBVLxmgWR0CKCVinYQJ5dX2UKGgGaAloD0MICFdAoR6UZ8CUhpRSlGgVTVEBaBZHQIoKh3qzJIV1fZQoaAZoCWgPQwijdOlfkrRewJSGlFKUaBVLvmgWR0CKCwSs8xKydX2UKGgGaAloD0MIBoIAGTpuNsCUhpRSlGgVS7JoFkdAigsCM5wOv3V9lChoBmgJaA9DCLjJqDKM90HAlIaUUpRoFUvtaBZHQIoLGWa+evp1fZQoaAZoCWgPQwiwy/CfbvJIwJSGlFKUaBVLw2gWR0CKC9vkzXSSdX2UKGgGaAloD0MI5CzsaYdFS8CUhpRSlGgVS6xoFkdAigwRT0g8sHV9lChoBmgJaA9DCP922a87E0/AlIaUUpRoFUumaBZHQIoMblNlAeJ1fZQoaAZoCWgPQwh79fHQd886wJSGlFKUaBVL/2gWR0CKDmef7JnydX2UKGgGaAloD0MI3zXoS+/kZsCUhpRSlGgVS7loFkdAig+CJ40Mw3V9lChoBmgJaA9DCP334LVLGWbAlIaUUpRoFUusaBZHQIoQOfoRqXZ1fZQoaAZoCWgPQwgKuVLPgpxowJSGlFKUaBVL9GgWR0CKEHbmlqJudX2UKGgGaAloD0MIKSLDKt40MMCUhpRSlGgVTR0BaBZHQIoRZqCYkVx1fZQoaAZoCWgPQwjhmdAksQdkwJSGlFKUaBVLh2gWR0CKEb9H+ZPVdX2UKGgGaAloD0MITSzwFV0TZMCUhpRSlGgVS69oFkdAihLT9KmKqHV9lChoBmgJaA9DCIrNx7WhdjdAlIaUUpRoFUv8aBZHQIoS0LlV94N1fZQoaAZoCWgPQwi7Cik/afVwwJSGlFKUaBVNSwFoFkdAihMJNCZ4OnV9lChoBmgJaA9DCHYcP1QaQT3AlIaUUpRoFUu2aBZHQIoUpGax5cF1fZQoaAZoCWgPQwgYWwhy0GhnwJSGlFKUaBVLpWgWR0CKFKMfigkDdX2UKGgGaAloD0MIu4CXGbaTaMCUhpRSlGgVS8ZoFkdAihV0i6g/T3V9lChoBmgJaA9DCNv8v+rIRW7AlIaUUpRoFUvkaBZHQIoXNog3cYZ1fZQoaAZoCWgPQwjkamRXWjJJwJSGlFKUaBVL0WgWR0CKF7bhWHUMdX2UKGgGaAloD0MIC5dV2AyoP8CUhpRSlGgVS7loFkdAihhois4kvHV9lChoBmgJaA9DCG9+w0SD5CXAlIaUUpRoFU0gAWgWR0CKGHpLVWjodX2UKGgGaAloD0MIYto399cea8CUhpRSlGgVS/NoFkdAihkN+9allHV9lChoBmgJaA9DCMh+FkuRNDDAlIaUUpRoFUu0aBZHQIoZIlSjxkN1fZQoaAZoCWgPQwjD0ytlGUo2wJSGlFKUaBVLwGgWR0CKG2RB/qgRdX2UKGgGaAloD0MIFASPb+/AQ0CUhpRSlGgVS+toFkdAihyitaIN3HV9lChoBmgJaA9DCM45eCY0bGTAlIaUUpRoFUuaaBZHQIocuys0YTF1fZQoaAZoCWgPQwh8nGnC9qcwwJSGlFKUaBVLu2gWR0CKHLxHXmNjdX2UKGgGaAloD0MIvDsyVpuHI8CUhpRSlGgVS9loFkdAih0lXA/LT3V9lChoBmgJaA9DCLwEpz4QT2vAlIaUUpRoFUv6aBZHQIodqPuG9Ht1fZQoaAZoCWgPQwiJ1LSLaQRHwJSGlFKUaBVLeWgWR0CKH2szVMEidX2UKGgGaAloD0MIk25L5IKLLkCUhpRSlGgVS8doFkdAiiAT90ihWnV9lChoBmgJaA9DCAVR9wFIcmLAlIaUUpRoFUuVaBZHQIohLej2zv91fZQoaAZoCWgPQwi5UzpY/wFrwJSGlFKUaBVNFwFoFkdAiiG35N47inV9lChoBmgJaA9DCKJD4EggQGnAlIaUUpRoFU0fAWgWR0CKIiyi22G7dX2UKGgGaAloD0MI71nXaDkSUcCUhpRSlGgVS7doFkdAiiJZc1O0s3V9lChoBmgJaA9DCBRdF35w9FjAlIaUUpRoFUu+aBZHQIoioLVnVXp1fZQoaAZoCWgPQwjowHKEDBRBwJSGlFKUaBVL1GgWR0CKIwsDnvDxdX2UKGgGaAloD0MIEaYol8bTSsCUhpRSlGgVTR8BaBZHQIoj+GM4tHx1fZQoaAZoCWgPQwg/bypSYW5VwJSGlFKUaBVL92gWR0CKJEFzuF6BdX2UKGgGaAloD0MI8umxLQM+MkCUhpRSlGgVS7RoFkdAiiYT19ORDHV9lChoBmgJaA9DCNdP/1lzS2HAlIaUUpRoFUuzaBZHQIomguyu6mR1fZQoaAZoCWgPQwg2P/7SogBNwJSGlFKUaBVLx2gWR0CKJyKR+z+ndX2UKGgGaAloD0MIgzEiUegPbMCUhpRSlGgVS7JoFkdAiiiaKtPpIXV9lChoBmgJaA9DCCZXsfhNJlLAlIaUUpRoFUuwaBZHQIoqP0wrUb11fZQoaAZoCWgPQwjmWUkrvkE4wJSGlFKUaBVLs2gWR0CKK5eE7GNrdX2UKGgGaAloD0MIPzkKEAWUb8CUhpRSlGgVTRwBaBZHQIosEuUUwi91fZQoaAZoCWgPQwjRV5BmLCxlwJSGlFKUaBVLuWgWR0CKLJX4j8k2dX2UKGgGaAloD0MIJzEIrBxGMcCUhpRSlGgVS8FoFkdAiiy5GjKxLXV9lChoBmgJaA9DCLpKd9fZ5FDAlIaUUpRoFU1AAWgWR0CKLPeY2Kl6dX2UKGgGaAloD0MINuSfGcTvQMCUhpRSlGgVTR0BaBZHQIotVpXZGrl1fZQoaAZoCWgPQwjyzqEMVekxwJSGlFKUaBVNCQFoFkdAii6pK8L8aXV9lChoBmgJaA9DCAithy8Ts0jAlIaUUpRoFUv3aBZHQIovMuFpPAR1fZQoaAZoCWgPQwhGlWHcDcJnwJSGlFKUaBVL8GgWR0CKMC5Jbt7bdX2UKGgGaAloD0MIXAUx0LU5YsCUhpRSlGgVS49oFkdAijLDsD4gzXV9lChoBmgJaA9DCJNX5xiQRTzAlIaUUpRoFUvOaBZHQIozMasIVud1fZQoaAZoCWgPQwjLLa2GxPUtwJSGlFKUaBVNCAFoFkdAijMqE384xXV9lChoBmgJaA9DCAPPvYdLEkXAlIaUUpRoFUvEaBZHQIo0PDNyHVR1fZQoaAZoCWgPQwjpKt1d5/VlwJSGlFKUaBVNEQFoFkdAijYhHskY43V9lChoBmgJaA9DCEXURJ+PQVTAlIaUUpRoFUvAaBZHQIo3IBJZnth1fZQoaAZoCWgPQwgLQ+T09fNjwJSGlFKUaBVLkGgWR0CKN1KoybhFdX2UKGgGaAloD0MIMxZNZycfOMCUhpRSlGgVS7loFkdAijfPAO8TSXV9lChoBmgJaA9DCF2G/3QDrUHAlIaUUpRoFUu2aBZHQIo33jQzDXR1fZQoaAZoCWgPQwgVyOwsepJqwJSGlFKUaBVNMAFoFkdAijifICEHuHV9lChoBmgJaA9DCCWyD7IsMD1AlIaUUpRoFUvEaBZHQIo5Etuk1uR1fZQoaAZoCWgPQwjT9xqC42hpwJSGlFKUaBVL7mgWR0CKOmOyVv/BdX2UKGgGaAloD0MI3CkdrP/pVcCUhpRSlGgVS71oFkdAijqhqTKT0XV9lChoBmgJaA9DCCdmvRhK6GHAlIaUUpRoFUuqaBZHQIo6n9tMwlB1fZQoaAZoCWgPQwjyzwziAzvtP5SGlFKUaBVLt2gWR0CKPofyPMjedX2UKGgGaAloD0MIEmvxKQAqQ8CUhpRSlGgVS9BoFkdAikBdQoCuEHV9lChoBmgJaA9DCJCF6BC4QGXAlIaUUpRoFUunaBZHQIpA2fXf6451fZQoaAZoCWgPQwhbDB6m/UNmwJSGlFKUaBVLmWgWR0CKQQpzcRDkdX2UKGgGaAloD0MIAOKuXkWQT8CUhpRSlGgVS/toFkdAikLs6JZW73V9lChoBmgJaA9DCJUPQdVobmjAlIaUUpRoFUuwaBZHQIpDO5Dqnm91fZQoaAZoCWgPQwjqlh3in0RmwJSGlFKUaBVLo2gWR0CKQzWUbDMvdX2UKGgGaAloD0MIndoZpjY0Y8CUhpRSlGgVS65oFkdAikRzyz5XVHV9lChoBmgJaA9DCI//AkGA9CvAlIaUUpRoFUvlaBZHQIpGJGBnSOR1fZQoaAZoCWgPQwjOGOYE7ZBmwJSGlFKUaBVNGAFoFkdAikavKdQO4HV9lChoBmgJaA9DCERQNXo1OFLAlIaUUpRoFUvyaBZHQIpLBOnEVFh1fZQoaAZoCWgPQwgxfhr35lRpwJSGlFKUaBVL+GgWR0CKS9E74i5edX2UKGgGaAloD0MI6Q5iZwqFWsCUhpRSlGgVS7doFkdAiku6Jyhi9nV9lChoBmgJaA9DCLbbLjTXKTHAlIaUUpRoFUu2aBZHQIpNhnjABT51fZQoaAZoCWgPQwj/eRowSNFWwJSGlFKUaBVLr2gWR0CKTbxVhkRSdX2UKGgGaAloD0MIl6yKcJOR8j+UhpRSlGgVTRwBaBZHQIpOb/82rGR1fZQoaAZoCWgPQwg0LEZda1dOQJSGlFKUaBVLnmgWR0CKTm0G/vfCdX2UKGgGaAloD0MI8YEd/wXWPsCUhpRSlGgVS4RoFkdAik/afjCHh3V9lChoBmgJaA9DCL+1EyUhzmPAlIaUUpRoFUu2aBZHQIpQay2QXAN1fZQoaAZoCWgPQwhR+GwdHBxHwJSGlFKUaBVL8WgWR0CKVL58BuGcdX2UKGgGaAloD0MIVp3VAnsM97+UhpRSlGgVS8ZoFkdAilVDX4CZGHV9lChoBmgJaA9DCMQHdvyXD23AlIaUUpRoFU0hAWgWR0CKWmwi7kGSdX2UKGgGaAloD0MIR3GOOrrOZsCUhpRSlGgVS55oFkdAilrLpzLfUHV9lChoBmgJaA9DCHEbDeAtoDDAlIaUUpRoFUu4aBZHQIpcNDSgGr11fZQoaAZoCWgPQwjeWibD8ZNUwJSGlFKUaBVLsWgWR0CKXIEzO5avdX2UKGgGaAloD0MIeSRens7BZcCUhpRSlGgVS9doFkdAilyrzXjEN3V9lChoBmgJaA9DCMHG9e/6HlvAlIaUUpRoFUuqaBZHQIpdkTlDF611fZQoaAZoCWgPQwjVIw1ua9c1QJSGlFKUaBVL5mgWR0CKXcdYnv2HdX2UKGgGaAloD0MIRdeFH5w2V8CUhpRSlGgVS/1oFkdAil7ie/YapHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 64, "n_steps": 2048, "gamma": 0.2, "gae_lambda": 0.2, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f900ce4ed40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f900ce4edd0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f900ce4ee60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f900ce4eef0>", "_build": "<function ActorCriticPolicy._build at 0x7f900ce4ef80>", "forward": "<function ActorCriticPolicy.forward at 0x7f900ce53050>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f900ce530e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f900ce53170>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f900ce53200>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f900ce53290>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f900ce53320>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f900ce21600>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 524288, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1653321635.297622, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAZvH6PA57mD/9teS9RPOWvhUqWD/QXju+AAAAAAAAAAAgxDy+tDXDPbhR9D5AHSy/9GmovgAAYz8AAAAAAAAAAJohAbs5S7U/02FMviB8dz76EhY7uy45PQAAAAAAAAAA074NvjsRjj8CW7Y+wQiwvnVnh75mYBA/AAAAAAAAAACa2aw8jRJvPq7uAT9LvMi+KUgKPybScj8AAAAAAAAAAN3ah74NJsg+lSF5PfDrlr4X8Ju/ZiAsvwAAAAAAAAAAui5BvrE1PD64rpu7HTA9vva/gb/iPgC+AAAAAAAAAAAtb30+l1s1P2vssz6w5fe9cBKqPpEkFT8AAAAAAAAAAE3rH74yt6o/ECIXv2ZRGL6EU2i+dqjDvgAAAAAAAAAATfEtPURcjj/BFsE+8nusvnRGhr5bKfs+AAAAAAAAAADNfxi+vT4WP1XOAD5zrSK/A4ejv2F1Hj8AAAAAAAAAABrV4D1kUdo+kLRzvsbXCL+8iwc/Oro1vwAAAAAAAAAAGhuyvSD9lj+EJDA+1onTvlLYRb+zzak+AAAAAAAAAACzslE9nu1OP3W86D7GrU2+iaSKPoOyUT8AAAAAAAAAAGAVPj4skaw/542XvHvju70qEEw/5IwbPgAAAAAAAAAAzQ8rPZghoT9w4U++2UWyvqnkAj+2IpC+AAAAAAAAAACUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAQAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVXhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIH/et1glcZMCUhpRSlIwBbJRL9owBdJRHQJkQ0JqqOtJ1fZQoaAZoCWgPQwipMSHmkmFswJSGlFKUaBVNLAFoFkdAmRDbPD50sHV9lChoBmgJaA9DCBSX4xUI2G9AlIaUUpRoFU0uAmgWR0CZETfywwCbdX2UKGgGaAloD0MI86/lleu+bUCUhpRSlGgVTdQBaBZHQJkR0gbIcR11fZQoaAZoCWgPQwhYA5SGmhdowJSGlFKUaBVNRwFoFkdAmRKbGrCFbnV9lChoBmgJaA9DCD+O5shKwGLAlIaUUpRoFUvxaBZHQJkSnpNbkfd1fZQoaAZoCWgPQwjdCfZf56b/v5SGlFKUaBVNJgFoFkdAmRLQ2uPmxXV9lChoBmgJaA9DCKSIDKt4TUVAlIaUUpRoFUvJaBZHQJkTAzP8hs91fZQoaAZoCWgPQwhe9utOd1JiwJSGlFKUaBVL3GgWR0CZFKFrl/6PdX2UKGgGaAloD0MIfqzgtyHcRECUhpRSlGgVTS4BaBZHQJkUuEf1Yhd1fZQoaAZoCWgPQwimRX2SO2g8wJSGlFKUaBVNAwFoFkdAmRS/qkdmx3V9lChoBmgJaA9DCKsGYW73wjtAlIaUUpRoFUuvaBZHQJkWPBEa2nd1fZQoaAZoCWgPQwiCcAUUandmwJSGlFKUaBVNGwFoFkdAmRaS4Bmwq3V9lChoBmgJaA9DCLYPectVhWXAlIaUUpRoFUv1aBZHQJkZQRf4REp1fZQoaAZoCWgPQwgoKbAApi5OwJSGlFKUaBVNZQFoFkdAmRm1fVqesnV9lChoBmgJaA9DCPoNEw2SF3DAlIaUUpRoFU09AWgWR0CZGcG1QZXNdX2UKGgGaAloD0MI73VSX5auOkCUhpRSlGgVTQcBaBZHQJkaX7N0NjN1fZQoaAZoCWgPQwjy7shYbf7rv5SGlFKUaBVL0mgWR0CZGow3HaN/dX2UKGgGaAloD0MIPxnjw+znRMCUhpRSlGgVS+loFkdAmRsbQw9JSXV9lChoBmgJaA9DCPM8uDtrpyvAlIaUUpRoFU0BAWgWR0CZG8NOuaF3dX2UKGgGaAloD0MIQSswZPWAaMCUhpRSlGgVTT0BaBZHQJkdLWZqmCR1fZQoaAZoCWgPQwgIrvIEwvplwJSGlFKUaBVNJgFoFkdAmR1M/D+BH3V9lChoBmgJaA9DCLZHb7gPmmXAlIaUUpRoFUvyaBZHQJkdyr6tT1l1fZQoaAZoCWgPQwgYCtgORrwpQJSGlFKUaBVL/GgWR0CZHjQZ4wAVdX2UKGgGaAloD0MIWpvG9tozb8CUhpRSlGgVTXoBaBZHQJkeVT0g8r91fZQoaAZoCWgPQwju6lVkdAxAwJSGlFKUaBVL7GgWR0CZH4QaJhvzdX2UKGgGaAloD0MIsHYU56h3NUCUhpRSlGgVS8FoFkdAmSGE4BFNL3V9lChoBmgJaA9DCMbE5uPaRWRAlIaUUpRoFU0/AmgWR0CZIXrX18LKdX2UKGgGaAloD0MIJ07udyhiN8CUhpRSlGgVS/poFkdAmSL5L/S6UnV9lChoBmgJaA9DCKUV31D4RW1AlIaUUpRoFU2WAWgWR0CZI+wM6RyPdX2UKGgGaAloD0MITzxnCwjtE8CUhpRSlGgVS+xoFkdAmSP4GUwBYHV9lChoBmgJaA9DCMJoVrYPb0RAlIaUUpRoFU05AWgWR0CZJSBLwnYydX2UKGgGaAloD0MID7kZbkBEasCUhpRSlGgVTS0BaBZHQJkmEZflZHN1fZQoaAZoCWgPQwiemPVi6FdxQJSGlFKUaBVNRwFoFkdAmSY+vt+kQHV9lChoBmgJaA9DCMISDyibct+/lIaUUpRoFUv1aBZHQJkmhDD0lJJ1fZQoaAZoCWgPQwhrZi0FpF0owJSGlFKUaBVL5WgWR0CZJoTgEU0vdX2UKGgGaAloD0MIoS3nUlwPZcCUhpRSlGgVTSMBaBZHQJkm39uP3i91fZQoaAZoCWgPQwgMWd3qOWZowJSGlFKUaBVNAQFoFkdAmSb56dDpknV9lChoBmgJaA9DCBcSMLq8QS7AlIaUUpRoFU0nAWgWR0CZKQ66asp5dX2UKGgGaAloD0MIKZfGL7xaO0CUhpRSlGgVTQMBaBZHQJkpNmRNh3J1fZQoaAZoCWgPQwib54h8l1hOwJSGlFKUaBVNNAFoFkdAmSmeQEIPb3V9lChoBmgJaA9DCPusMlNau0FAlIaUUpRoFU0FAWgWR0CZKvVQyhzvdX2UKGgGaAloD0MIc2Tll8FSa8CUhpRSlGgVS/9oFkdAmS1QYcebNXV9lChoBmgJaA9DCCUgJuHC6GjAlIaUUpRoFU0bAWgWR0CZLX1KGtZFdX2UKGgGaAloD0MIjwBuFi87aMCUhpRSlGgVTRcBaBZHQJkuTWEsasJ1fZQoaAZoCWgPQwiXGwx12LVnwJSGlFKUaBVNFgFoFkdAmS+nRb8m8nV9lChoBmgJaA9DCNYcIJijNzTAlIaUUpRoFU0RAWgWR0CZMZmYSg5BdX2UKGgGaAloD0MIjgdb7PZZZcCUhpRSlGgVTSkBaBZHQJkyVA7gbZR1fZQoaAZoCWgPQwhXPsvz4IlqQJSGlFKUaBVNvwFoFkdAmTOj6vaDf3V9lChoBmgJaA9DCAk1Q6ooDjLAlIaUUpRoFU1SAWgWR0CZM+LkjopydX2UKGgGaAloD0MI+z+H+fKSRUCUhpRSlGgVS6loFkdAmTWDeGfwqnV9lChoBmgJaA9DCAMjL2viJWrAlIaUUpRoFU1eAWgWR0CZNZ4iX6ZZdX2UKGgGaAloD0MIdJgvL0D4Z8CUhpRSlGgVTRYBaBZHQJk1/Sb6P811fZQoaAZoCWgPQwjvO4bHftZnwJSGlFKUaBVL8WgWR0CZNjBt1p0wdX2UKGgGaAloD0MIrAFKQw3PaUCUhpRSlGgVTZcBaBZHQJk3WtITXat1fZQoaAZoCWgPQwjqPgCpzZ9qwJSGlFKUaBVNVQFoFkdAmTf4Tj/+9HV9lChoBmgJaA9DCE+w/zq3WnFAlIaUUpRoFU2LAWgWR0CZOdk9ECvHdX2UKGgGaAloD0MIbjDUYQW3YsCUhpRSlGgVS+ZoFkdAmTn1tKqXGHV9lChoBmgJaA9DCIrnbAEhcW3AlIaUUpRoFU1FAWgWR0CZO8EMspXqdX2UKGgGaAloD0MIpPyk2qcHaMCUhpRSlGgVTUcBaBZHQJk8n4TK1Xx1fZQoaAZoCWgPQwgtXFZhM7AiwJSGlFKUaBVL/mgWR0CZPeuIRAbAdX2UKGgGaAloD0MIzJcXYB9NMsCUhpRSlGgVS/poFkdAmT34Ju2qk3V9lChoBmgJaA9DCHTTZpwGB2BAlIaUUpRoFU3oA2gWR0CZPgsxfv4NdX2UKGgGaAloD0MIJ/VlaadePcCUhpRSlGgVS+doFkdAmT79hRZU1nV9lChoBmgJaA9DCPFkNzP6C07AlIaUUpRoFU09AWgWR0CZP14nndO7dX2UKGgGaAloD0MI8L4qFypbakCUhpRSlGgVTXUCaBZHQJk/pq59Vm11fZQoaAZoCWgPQwiW0cjnFblswJSGlFKUaBVNbwFoFkdAmUC67dznzXV9lChoBmgJaA9DCCsU6X5OmSVAlIaUUpRoFU0TAWgWR0CZQNDBdld1dX2UKGgGaAloD0MIprqAlxkCN8CUhpRSlGgVS+toFkdAmUEEhV2ic3V9lChoBmgJaA9DCP4o6sw9JNK/lIaUUpRoFU0GAWgWR0CZQViUgSvldX2UKGgGaAloD0MIea2E7pJEM0CUhpRSlGgVTTgBaBZHQJlBgr6LwWp1fZQoaAZoCWgPQwhKB+v/HJpuwJSGlFKUaBVNQgFoFkdAmUHTnq3VkXV9lChoBmgJaA9DCFFLcysE/m7AlIaUUpRoFUv1aBZHQJlCvtQbdad1fZQoaAZoCWgPQwjh05y8SKJpwJSGlFKUaBVNIQFoFkdAmUQfQBxPwnV9lChoBmgJaA9DCEWduYeEr2TAlIaUUpRoFU0JAWgWR0CZRbszEaVEdX2UKGgGaAloD0MI626e6pBXPsCUhpRSlGgVS/JoFkdAmUYNipeeF3V9lChoBmgJaA9DCFFPH4E/jB/AlIaUUpRoFUvxaBZHQJlHGIWP91l1fZQoaAZoCWgPQwjzIagavUhEwJSGlFKUaBVNGAFoFkdAmUeYu01IiHV9lChoBmgJaA9DCOcb0T3rVj/AlIaUUpRoFUvxaBZHQJlH1z8xbjd1fZQoaAZoCWgPQwj1oKAUrQxpwJSGlFKUaBVNAwFoFkdAmUg1GG21D3V9lChoBmgJaA9DCCXqBZ/m/WnAlIaUUpRoFUvgaBZHQJlIR/Aj6ep1fZQoaAZoCWgPQwgEN1K2SK4zwJSGlFKUaBVNbAFoFkdAmUi+AI6bOXV9lChoBmgJaA9DCA/R6A7ia2zAlIaUUpRoFU1MAWgWR0CZSaiXIEKWdX2UKGgGaAloD0MIBP7w89/DMsCUhpRSlGgVTQEBaBZHQJlK1G3F1jl1fZQoaAZoCWgPQwisqpff6SxrwJSGlFKUaBVNGgFoFkdAmUseDe0ojXV9lChoBmgJaA9DCAdDHVa4R2bAlIaUUpRoFU0rAWgWR0CZS1eGO+7EdX2UKGgGaAloD0MIXRq/8EoAbkCUhpRSlGgVTRwBaBZHQJlLYIJJGvx1fZQoaAZoCWgPQwgcCp+tA51uwJSGlFKUaBVNPQFoFkdAmUuw9zOopHV9lChoBmgJaA9DCHeDaK1oxzrAlIaUUpRoFU0IAWgWR0CZTAPeYUnHdX2UKGgGaAloD0MIhey8jc0aNcCUhpRSlGgVS7BoFkdAmU0TGHYYi3V9lChoBmgJaA9DCEfIQJ7dxmDAlIaUUpRoFUviaBZHQJlNeuNgjQl1fZQoaAZoCWgPQwgoCvSJPFtDwJSGlFKUaBVL82gWR0CZTj9Nvfj0dX2UKGgGaAloD0MIjgQabOo80j+UhpRSlGgVS/BoFkdAmU+xnJ1aGHV9lChoBmgJaA9DCEcgXtev4W1AlIaUUpRoFU1TAWgWR0CZT7lGgBcSdX2UKGgGaAloD0MIEvsEUIwPZcCUhpRSlGgVS/loFkdAmU/KH0se4nV9lChoBmgJaA9DCEJaY9AJOS9AlIaUUpRoFUu2aBZHQJlQbl3hXKd1fZQoaAZoCWgPQwi6v3rct8InwJSGlFKUaBVNBAFoFkdAmVC0/bCaZ3V9lChoBmgJaA9DCJCGU+ZmEm3AlIaUUpRoFU0DAWgWR0CZUeVUdaMadX2UKGgGaAloD0MI7KF9rOAvI0CUhpRSlGgVTUYBaBZHQJlS9wbVBld1fZQoaAZoCWgPQwiuZwjHLIVqwJSGlFKUaBVNEAFoFkdAmVPJuVHFxXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 128, "n_steps": 2048, "gamma": 0.2, "gae_lambda": 0.2, "ent_coef": 0.01, "vf_coef": 0.8, "max_grad_norm": 0.9, "batch_size": 128, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:db3a71a088678f6380ba60f87dc831c9f00e5ac0fb7225623128b543804e267a
|
3 |
+
size 278211
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": -66.85736721422313, "std_reward": 139.52567140425782, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-23T16:08:13.023523"}
|
second_rl_ppo_model.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b6c20572a5f5dbf1ca0e371638a4e7705c92d8f15fe41778fc486b0615552f65
|
3 |
+
size 144108
|
second_rl_ppo_model/data
CHANGED
@@ -42,12 +42,12 @@
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
-
"num_timesteps":
|
46 |
-
"_total_timesteps":
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
@@ -56,11 +56,11 @@
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
63 |
-
":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////
|
64 |
},
|
65 |
"_last_original_obs": null,
|
66 |
"_episode_num": 0,
|
@@ -69,19 +69,19 @@
|
|
69 |
"_current_progress_remaining": -0.04857599999999995,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
-
"_n_updates":
|
79 |
"n_steps": 2048,
|
80 |
"gamma": 0.2,
|
81 |
"gae_lambda": 0.2,
|
82 |
"ent_coef": 0.01,
|
83 |
-
"vf_coef": 0.
|
84 |
-
"max_grad_norm": 0.
|
85 |
"batch_size": 128,
|
86 |
"n_epochs": 8,
|
87 |
"clip_range": {
|
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
+
"num_timesteps": 524288,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
+
"start_time": 1653321635.297622,
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAZvH6PA57mD/9teS9RPOWvhUqWD/QXju+AAAAAAAAAAAgxDy+tDXDPbhR9D5AHSy/9GmovgAAYz8AAAAAAAAAAJohAbs5S7U/02FMviB8dz76EhY7uy45PQAAAAAAAAAA074NvjsRjj8CW7Y+wQiwvnVnh75mYBA/AAAAAAAAAACa2aw8jRJvPq7uAT9LvMi+KUgKPybScj8AAAAAAAAAAN3ah74NJsg+lSF5PfDrlr4X8Ju/ZiAsvwAAAAAAAAAAui5BvrE1PD64rpu7HTA9vva/gb/iPgC+AAAAAAAAAAAtb30+l1s1P2vssz6w5fe9cBKqPpEkFT8AAAAAAAAAAE3rH74yt6o/ECIXv2ZRGL6EU2i+dqjDvgAAAAAAAAAATfEtPURcjj/BFsE+8nusvnRGhr5bKfs+AAAAAAAAAADNfxi+vT4WP1XOAD5zrSK/A4ejv2F1Hj8AAAAAAAAAABrV4D1kUdo+kLRzvsbXCL+8iwc/Oro1vwAAAAAAAAAAGhuyvSD9lj+EJDA+1onTvlLYRb+zzak+AAAAAAAAAACzslE9nu1OP3W86D7GrU2+iaSKPoOyUT8AAAAAAAAAAGAVPj4skaw/542XvHvju70qEEw/5IwbPgAAAAAAAAAAzQ8rPZghoT9w4U++2UWyvqnkAj+2IpC+AAAAAAAAAACUdJRiLg=="
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAQAAAAAAAAAAAAAAAACUdJRiLg=="
|
64 |
},
|
65 |
"_last_original_obs": null,
|
66 |
"_episode_num": 0,
|
|
|
69 |
"_current_progress_remaining": -0.04857599999999995,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gASVXhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIH/et1glcZMCUhpRSlIwBbJRL9owBdJRHQJkQ0JqqOtJ1fZQoaAZoCWgPQwipMSHmkmFswJSGlFKUaBVNLAFoFkdAmRDbPD50sHV9lChoBmgJaA9DCBSX4xUI2G9AlIaUUpRoFU0uAmgWR0CZETfywwCbdX2UKGgGaAloD0MI86/lleu+bUCUhpRSlGgVTdQBaBZHQJkR0gbIcR11fZQoaAZoCWgPQwhYA5SGmhdowJSGlFKUaBVNRwFoFkdAmRKbGrCFbnV9lChoBmgJaA9DCD+O5shKwGLAlIaUUpRoFUvxaBZHQJkSnpNbkfd1fZQoaAZoCWgPQwjdCfZf56b/v5SGlFKUaBVNJgFoFkdAmRLQ2uPmxXV9lChoBmgJaA9DCKSIDKt4TUVAlIaUUpRoFUvJaBZHQJkTAzP8hs91fZQoaAZoCWgPQwhe9utOd1JiwJSGlFKUaBVL3GgWR0CZFKFrl/6PdX2UKGgGaAloD0MIfqzgtyHcRECUhpRSlGgVTS4BaBZHQJkUuEf1Yhd1fZQoaAZoCWgPQwimRX2SO2g8wJSGlFKUaBVNAwFoFkdAmRS/qkdmx3V9lChoBmgJaA9DCKsGYW73wjtAlIaUUpRoFUuvaBZHQJkWPBEa2nd1fZQoaAZoCWgPQwiCcAUUandmwJSGlFKUaBVNGwFoFkdAmRaS4Bmwq3V9lChoBmgJaA9DCLYPectVhWXAlIaUUpRoFUv1aBZHQJkZQRf4REp1fZQoaAZoCWgPQwgoKbAApi5OwJSGlFKUaBVNZQFoFkdAmRm1fVqesnV9lChoBmgJaA9DCPoNEw2SF3DAlIaUUpRoFU09AWgWR0CZGcG1QZXNdX2UKGgGaAloD0MI73VSX5auOkCUhpRSlGgVTQcBaBZHQJkaX7N0NjN1fZQoaAZoCWgPQwjy7shYbf7rv5SGlFKUaBVL0mgWR0CZGow3HaN/dX2UKGgGaAloD0MIPxnjw+znRMCUhpRSlGgVS+loFkdAmRsbQw9JSXV9lChoBmgJaA9DCPM8uDtrpyvAlIaUUpRoFU0BAWgWR0CZG8NOuaF3dX2UKGgGaAloD0MIQSswZPWAaMCUhpRSlGgVTT0BaBZHQJkdLWZqmCR1fZQoaAZoCWgPQwgIrvIEwvplwJSGlFKUaBVNJgFoFkdAmR1M/D+BH3V9lChoBmgJaA9DCLZHb7gPmmXAlIaUUpRoFUvyaBZHQJkdyr6tT1l1fZQoaAZoCWgPQwgYCtgORrwpQJSGlFKUaBVL/GgWR0CZHjQZ4wAVdX2UKGgGaAloD0MIWpvG9tozb8CUhpRSlGgVTXoBaBZHQJkeVT0g8r91fZQoaAZoCWgPQwju6lVkdAxAwJSGlFKUaBVL7GgWR0CZH4QaJhvzdX2UKGgGaAloD0MIsHYU56h3NUCUhpRSlGgVS8FoFkdAmSGE4BFNL3V9lChoBmgJaA9DCMbE5uPaRWRAlIaUUpRoFU0/AmgWR0CZIXrX18LKdX2UKGgGaAloD0MIJ07udyhiN8CUhpRSlGgVS/poFkdAmSL5L/S6UnV9lChoBmgJaA9DCKUV31D4RW1AlIaUUpRoFU2WAWgWR0CZI+wM6RyPdX2UKGgGaAloD0MITzxnCwjtE8CUhpRSlGgVS+xoFkdAmSP4GUwBYHV9lChoBmgJaA9DCMJoVrYPb0RAlIaUUpRoFU05AWgWR0CZJSBLwnYydX2UKGgGaAloD0MID7kZbkBEasCUhpRSlGgVTS0BaBZHQJkmEZflZHN1fZQoaAZoCWgPQwiemPVi6FdxQJSGlFKUaBVNRwFoFkdAmSY+vt+kQHV9lChoBmgJaA9DCMISDyibct+/lIaUUpRoFUv1aBZHQJkmhDD0lJJ1fZQoaAZoCWgPQwhrZi0FpF0owJSGlFKUaBVL5WgWR0CZJoTgEU0vdX2UKGgGaAloD0MIoS3nUlwPZcCUhpRSlGgVTSMBaBZHQJkm39uP3i91fZQoaAZoCWgPQwgMWd3qOWZowJSGlFKUaBVNAQFoFkdAmSb56dDpknV9lChoBmgJaA9DCBcSMLq8QS7AlIaUUpRoFU0nAWgWR0CZKQ66asp5dX2UKGgGaAloD0MIKZfGL7xaO0CUhpRSlGgVTQMBaBZHQJkpNmRNh3J1fZQoaAZoCWgPQwib54h8l1hOwJSGlFKUaBVNNAFoFkdAmSmeQEIPb3V9lChoBmgJaA9DCPusMlNau0FAlIaUUpRoFU0FAWgWR0CZKvVQyhzvdX2UKGgGaAloD0MIc2Tll8FSa8CUhpRSlGgVS/9oFkdAmS1QYcebNXV9lChoBmgJaA9DCCUgJuHC6GjAlIaUUpRoFU0bAWgWR0CZLX1KGtZFdX2UKGgGaAloD0MIjwBuFi87aMCUhpRSlGgVTRcBaBZHQJkuTWEsasJ1fZQoaAZoCWgPQwiXGwx12LVnwJSGlFKUaBVNFgFoFkdAmS+nRb8m8nV9lChoBmgJaA9DCNYcIJijNzTAlIaUUpRoFU0RAWgWR0CZMZmYSg5BdX2UKGgGaAloD0MIjgdb7PZZZcCUhpRSlGgVTSkBaBZHQJkyVA7gbZR1fZQoaAZoCWgPQwhXPsvz4IlqQJSGlFKUaBVNvwFoFkdAmTOj6vaDf3V9lChoBmgJaA9DCAk1Q6ooDjLAlIaUUpRoFU1SAWgWR0CZM+LkjopydX2UKGgGaAloD0MI+z+H+fKSRUCUhpRSlGgVS6loFkdAmTWDeGfwqnV9lChoBmgJaA9DCAMjL2viJWrAlIaUUpRoFU1eAWgWR0CZNZ4iX6ZZdX2UKGgGaAloD0MIdJgvL0D4Z8CUhpRSlGgVTRYBaBZHQJk1/Sb6P811fZQoaAZoCWgPQwjvO4bHftZnwJSGlFKUaBVL8WgWR0CZNjBt1p0wdX2UKGgGaAloD0MIrAFKQw3PaUCUhpRSlGgVTZcBaBZHQJk3WtITXat1fZQoaAZoCWgPQwjqPgCpzZ9qwJSGlFKUaBVNVQFoFkdAmTf4Tj/+9HV9lChoBmgJaA9DCE+w/zq3WnFAlIaUUpRoFU2LAWgWR0CZOdk9ECvHdX2UKGgGaAloD0MIbjDUYQW3YsCUhpRSlGgVS+ZoFkdAmTn1tKqXGHV9lChoBmgJaA9DCIrnbAEhcW3AlIaUUpRoFU1FAWgWR0CZO8EMspXqdX2UKGgGaAloD0MIpPyk2qcHaMCUhpRSlGgVTUcBaBZHQJk8n4TK1Xx1fZQoaAZoCWgPQwgtXFZhM7AiwJSGlFKUaBVL/mgWR0CZPeuIRAbAdX2UKGgGaAloD0MIzJcXYB9NMsCUhpRSlGgVS/poFkdAmT34Ju2qk3V9lChoBmgJaA9DCHTTZpwGB2BAlIaUUpRoFU3oA2gWR0CZPgsxfv4NdX2UKGgGaAloD0MIJ/VlaadePcCUhpRSlGgVS+doFkdAmT79hRZU1nV9lChoBmgJaA9DCPFkNzP6C07AlIaUUpRoFU09AWgWR0CZP14nndO7dX2UKGgGaAloD0MI8L4qFypbakCUhpRSlGgVTXUCaBZHQJk/pq59Vm11fZQoaAZoCWgPQwiW0cjnFblswJSGlFKUaBVNbwFoFkdAmUC67dznzXV9lChoBmgJaA9DCCsU6X5OmSVAlIaUUpRoFU0TAWgWR0CZQNDBdld1dX2UKGgGaAloD0MIprqAlxkCN8CUhpRSlGgVS+toFkdAmUEEhV2ic3V9lChoBmgJaA9DCP4o6sw9JNK/lIaUUpRoFU0GAWgWR0CZQViUgSvldX2UKGgGaAloD0MIea2E7pJEM0CUhpRSlGgVTTgBaBZHQJlBgr6LwWp1fZQoaAZoCWgPQwhKB+v/HJpuwJSGlFKUaBVNQgFoFkdAmUHTnq3VkXV9lChoBmgJaA9DCFFLcysE/m7AlIaUUpRoFUv1aBZHQJlCvtQbdad1fZQoaAZoCWgPQwjh05y8SKJpwJSGlFKUaBVNIQFoFkdAmUQfQBxPwnV9lChoBmgJaA9DCEWduYeEr2TAlIaUUpRoFU0JAWgWR0CZRbszEaVEdX2UKGgGaAloD0MI626e6pBXPsCUhpRSlGgVS/JoFkdAmUYNipeeF3V9lChoBmgJaA9DCFFPH4E/jB/AlIaUUpRoFUvxaBZHQJlHGIWP91l1fZQoaAZoCWgPQwjzIagavUhEwJSGlFKUaBVNGAFoFkdAmUeYu01IiHV9lChoBmgJaA9DCOcb0T3rVj/AlIaUUpRoFUvxaBZHQJlH1z8xbjd1fZQoaAZoCWgPQwj1oKAUrQxpwJSGlFKUaBVNAwFoFkdAmUg1GG21D3V9lChoBmgJaA9DCCXqBZ/m/WnAlIaUUpRoFUvgaBZHQJlIR/Aj6ep1fZQoaAZoCWgPQwgEN1K2SK4zwJSGlFKUaBVNbAFoFkdAmUi+AI6bOXV9lChoBmgJaA9DCA/R6A7ia2zAlIaUUpRoFU1MAWgWR0CZSaiXIEKWdX2UKGgGaAloD0MIBP7w89/DMsCUhpRSlGgVTQEBaBZHQJlK1G3F1jl1fZQoaAZoCWgPQwisqpff6SxrwJSGlFKUaBVNGgFoFkdAmUseDe0ojXV9lChoBmgJaA9DCAdDHVa4R2bAlIaUUpRoFU0rAWgWR0CZS1eGO+7EdX2UKGgGaAloD0MIXRq/8EoAbkCUhpRSlGgVTRwBaBZHQJlLYIJJGvx1fZQoaAZoCWgPQwgcCp+tA51uwJSGlFKUaBVNPQFoFkdAmUuw9zOopHV9lChoBmgJaA9DCHeDaK1oxzrAlIaUUpRoFU0IAWgWR0CZTAPeYUnHdX2UKGgGaAloD0MIhey8jc0aNcCUhpRSlGgVS7BoFkdAmU0TGHYYi3V9lChoBmgJaA9DCEfIQJ7dxmDAlIaUUpRoFUviaBZHQJlNeuNgjQl1fZQoaAZoCWgPQwgoCvSJPFtDwJSGlFKUaBVL82gWR0CZTj9Nvfj0dX2UKGgGaAloD0MIjgQabOo80j+UhpRSlGgVS/BoFkdAmU+xnJ1aGHV9lChoBmgJaA9DCEcgXtev4W1AlIaUUpRoFU1TAWgWR0CZT7lGgBcSdX2UKGgGaAloD0MIEvsEUIwPZcCUhpRSlGgVS/loFkdAmU/KH0se4nV9lChoBmgJaA9DCEJaY9AJOS9AlIaUUpRoFUu2aBZHQJlQbl3hXKd1fZQoaAZoCWgPQwi6v3rct8InwJSGlFKUaBVNBAFoFkdAmVC0/bCaZ3V9lChoBmgJaA9DCJCGU+ZmEm3AlIaUUpRoFU0DAWgWR0CZUeVUdaMadX2UKGgGaAloD0MI7KF9rOAvI0CUhpRSlGgVTUYBaBZHQJlS9wbVBld1fZQoaAZoCWgPQwiuZwjHLIVqwJSGlFKUaBVNEAFoFkdAmVPJuVHFxXVlLg=="
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
+
"_n_updates": 128,
|
79 |
"n_steps": 2048,
|
80 |
"gamma": 0.2,
|
81 |
"gae_lambda": 0.2,
|
82 |
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.8,
|
84 |
+
"max_grad_norm": 0.9,
|
85 |
"batch_size": 128,
|
86 |
"n_epochs": 8,
|
87 |
"clip_range": {
|
second_rl_ppo_model/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 84829
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d23e0de8a0ad6a9992b48228f03f702a1fa0366225a186480fc94166f939f13c
|
3 |
size 84829
|
second_rl_ppo_model/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43201
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a9f80927651205aff8055396f6f5a70d510fd626c4675a8d32da719921c87ef0
|
3 |
size 43201
|