--- base_model: google-bert/bert-base-cased library_name: peft license: apache-2.0 metrics: - accuracy tags: - generated_from_trainer model-index: - name: BERT-peft_LoRA results: [] --- # BERT-peft_LoRA This model is a fine-tuned version of [google-bert/bert-base-cased](https://huggingface.co/google-bert/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.8855 - Accuracy: 0.25 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 22 | 1.9866 | 0.1078 | | No log | 2.0 | 44 | 1.9385 | 0.1078 | | No log | 3.0 | 66 | 1.9122 | 0.1912 | | No log | 4.0 | 88 | 1.8992 | 0.2549 | | No log | 5.0 | 110 | 1.8919 | 0.25 | | No log | 6.0 | 132 | 1.8881 | 0.25 | | No log | 7.0 | 154 | 1.8862 | 0.25 | | No log | 8.0 | 176 | 1.8855 | 0.25 | ### Framework versions - PEFT 0.12.0 - Transformers 4.44.0 - Pytorch 2.4.0+cu124 - Datasets 2.21.0 - Tokenizers 0.19.1