storm3d commited on
Commit
06387e6
1 Parent(s): 09626ae

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 219.75 +/- 21.36
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8c4592bb00>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8c4592bb90>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8c4592bc20>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8c4592bcb0>", "_build": "<function ActorCriticPolicy._build at 0x7f8c4592bd40>", "forward": "<function ActorCriticPolicy.forward at 0x7f8c4592bdd0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8c4592be60>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8c4592bef0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8c4592bf80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8c45930050>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8c459300e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8c4596ee10>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1668551696397924678, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABpZE732jAe6nbW4OgNpNrZJJJs6X+8rtQAAgD8AAIA/TT2aPXtylLrSNoM84q4vufpP37rGNyy4AACAPwAAgD+abR8+I/4xP/OdQL0byVW+0S0BPVmPj70AAAAAAAAAAJNJSL4kWPc+Z9mHPdeqZ74PyqK9hWUKPgAAAAAAAAAAenkGvhb5Nz1mS6+8P7kyvhwkB74sxKy8AAAAAAAAAADAQRc+HPQkvBmtsD2ndg29WW4hvaKvID0AAIA/AACAP+Zgc73POZY+z7FGvpLYrL0QGxe9VPcDvgAAAAAAAAAAwJqnvVwjPbrchxW7b15UNcdqPjoiNik6AACAPwAAgD9mlvS8cb05OKKgfrlDOiw9iCgxO+aLmTsAAIA/AACAP83EMjxX9Uo83EENPX+z+L3npbu9aiEavQAAAAAAAAAAmnGxO1zXLrovHqa7xJ2EtbQ4wbt+38Q6AACAPwAAgD+ag9s9w1FHuj7ksDr+uuU1jp6aOrrIyLkAAIA/AACAPw37pD0KVxw6amalu0WhGD3FJry7rqRpOgAAgD8AAIA/02E/PrlORj9VHFq8Gy8xvkp/kjx7Gu48AAAAAAAAAAC+O7u+nTOTP/jmWb4vlLO+q03CvvhfzTwAAAAAAAAAAJrq/T1dphY/zjhVvQsYX75Hh2G8RuvYPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIE+8AT1rIFkCUhpRSlIwBbJRLuowBdJRHQINstv/BFd91fZQoaAZoCWgPQwgNUYU/wxsnQJSGlFKUaBVNJQFoFkdAg28Bq9GqgnV9lChoBmgJaA9DCAuXVdgM5lhAlIaUUpRoFU3oA2gWR0CDnXWfbsWwdX2UKGgGaAloD0MIAYkmUMT5XUCUhpRSlGgVTegDaBZHQIOog3Jgb6x1fZQoaAZoCWgPQwg98gcDT7piQJSGlFKUaBVN6ANoFkdAg7whl18stnV9lChoBmgJaA9DCPD8ogR9FGFAlIaUUpRoFU3oA2gWR0CDvWMxXXAedX2UKGgGaAloD0MI3BFOC16iR0CUhpRSlGgVS9toFkdAg982WyC4BnV9lChoBmgJaA9DCPBt+rOfBmNAlIaUUpRoFU3oA2gWR0CD4GsCDEm6dX2UKGgGaAloD0MIkuhlFMvBQkCUhpRSlGgVS+JoFkdAg+Fq64Ds+nV9lChoBmgJaA9DCE0SS8rdiWJAlIaUUpRoFU3oA2gWR0CD8c/gR9PUdX2UKGgGaAloD0MIAWvVrglgW0CUhpRSlGgVTegDaBZHQIP0p/gBLf11fZQoaAZoCWgPQwjGhQMhWbNYQJSGlFKUaBVN6ANoFkdAg/hHvUjLS3V9lChoBmgJaA9DCJHQlnMpBVlAlIaUUpRoFU3oA2gWR0CD/QuU2UB5dX2UKGgGaAloD0MIa2CrBItrKECUhpRSlGgVTRQBaBZHQIQJjnDBMzx1fZQoaAZoCWgPQwiQ2sTJ/RowwJSGlFKUaBVNLwFoFkdAhAxifpUxVXV9lChoBmgJaA9DCMqoMoy75VRAlIaUUpRoFU3oA2gWR0CEGkhrWRRudX2UKGgGaAloD0MICOkpcojgO0CUhpRSlGgVTRIBaBZHQIQatRDTjNp1fZQoaAZoCWgPQwgKoBhZMkJbQJSGlFKUaBVN6ANoFkdAhCaWKl54W3V9lChoBmgJaA9DCN9Szhd76UJAlIaUUpRoFU3oA2gWR0CEJw53C9AYdX2UKGgGaAloD0MI3+ALk6kwYUCUhpRSlGgVTegDaBZHQIQpXnnuAqd1fZQoaAZoCWgPQwiAn3HhwChgQJSGlFKUaBVN6ANoFkdAhCuh6a9bo3V9lChoBmgJaA9DCNwQ4zWvJFtAlIaUUpRoFU3oA2gWR0CELQkrwvxpdX2UKGgGaAloD0MId6OP+YAgVkCUhpRSlGgVTegDaBZHQIQvFGus90R1fZQoaAZoCWgPQwj2fw7z5RlEQJSGlFKUaBVNEgFoFkdAhDFXkgfU4XV9lChoBmgJaA9DCK1sH/KWrF5AlIaUUpRoFU3oA2gWR0CEW/xCIDYAdX2UKGgGaAloD0MIuECC4seIFMCUhpRSlGgVS9JoFkdAhFwXuuzQeHV9lChoBmgJaA9DCCIa3UFs1mJAlIaUUpRoFU3oA2gWR0CEYauSOinHdX2UKGgGaAloD0MI1Lg3v2GxUUCUhpRSlGgVS7poFkdAhGUk3CKrJnV9lChoBmgJaA9DCGx4eqUsfzxAlIaUUpRoFU0vAWgWR0CEb5rD63y7dX2UKGgGaAloD0MIhNOCF31RPcCUhpRSlGgVS/BoFkdAhHTUYbbUPXV9lChoBmgJaA9DCB0Dste7XUNAlIaUUpRoFU0QAWgWR0CEh6XFcY65dX2UKGgGaAloD0MI66urArXFXkCUhpRSlGgVTegDaBZHQISJVaUzKtB1fZQoaAZoCWgPQwh/MsaH2Z9YQJSGlFKUaBVN6ANoFkdAhJroQ4CIUXV9lChoBmgJaA9DCFn7O9sjTGFAlIaUUpRoFU3oA2gWR0CEoeOU+s5odX2UKGgGaAloD0MIn+OjxZnMYUCUhpRSlGgVTegDaBZHQISm3lp48lp1fZQoaAZoCWgPQwgQO1PovERbQJSGlFKUaBVN6ANoFkdAhLNu1F6RhnV9lChoBmgJaA9DCMR6o1aY3VVAlIaUUpRoFU3oA2gWR0CExIIiTt9hdX2UKGgGaAloD0MI2ZlC5zWaWECUhpRSlGgVTegDaBZHQITRyW7e2ux1fZQoaAZoCWgPQwhuv3yyYpFaQJSGlFKUaBVN6ANoFkdAhNJI0ALiM3V9lChoBmgJaA9DCPVHGAYsxltAlIaUUpRoFU3oA2gWR0CE2RJ7LMcIdX2UKGgGaAloD0MI3QiLijj7WUCUhpRSlGgVTegDaBZHQITbdvGZNPB1fZQoaAZoCWgPQwi69C9JZbhKQJSGlFKUaBVN6ANoFkdAhN5d3r2QGXV9lChoBmgJaA9DCGFxOPMrl2BAlIaUUpRoFU3oA2gWR0CFCEmG/N7jdX2UKGgGaAloD0MIFJSilXuhVUCUhpRSlGgVTegDaBZHQIURKgmJFb51fZQoaAZoCWgPQwjYf52bNuO8P5SGlFKUaBVL6GgWR0CFI+vf0mMPdX2UKGgGaAloD0MIaOkKthEeYECUhpRSlGgVTegDaBZHQIUto+jdpIt1fZQoaAZoCWgPQwgFacai6UhYQJSGlFKUaBVN6ANoFkdAhTioexOclXV9lChoBmgJaA9DCE7U0twKqSrAlIaUUpRoFU0PAWgWR0CFTPnM+u/2dX2UKGgGaAloD0MI0NOAQVINYECUhpRSlGgVTegDaBZHQIVVFmSQo1F1fZQoaAZoCWgPQwhoW80646peQJSGlFKUaBVN6ANoFkdAhVatBF/hEXV9lChoBmgJaA9DCCyf5Xlwd+o/lIaUUpRoFUvzaBZHQIVerl/6O5t1fZQoaAZoCWgPQwiTbkvkghlfQJSGlFKUaBVN6ANoFkdAhWZx1HOKO3V9lChoBmgJaA9DCJnTZTGxUU5AlIaUUpRoFU3oA2gWR0CFbJHhCMP0dX2UKGgGaAloD0MIlFD6QsjnXECUhpRSlGgVTegDaBZHQIVw11B+nZV1fZQoaAZoCWgPQwiR7Xw/NaphQJSGlFKUaBVN6ANoFkdAhXxECeVcEHV9lChoBmgJaA9DCFkw8UdRW09AlIaUUpRoFU0EAWgWR0CFgBO32EkCdX2UKGgGaAloD0MI/MQB9Pv+77+UhpRSlGgVTQcBaBZHQIWID59E1EV1fZQoaAZoCWgPQwjnxYmvduw2wJSGlFKUaBVL9GgWR0CFi8S13MY/dX2UKGgGaAloD0MI9diWAefhY0CUhpRSlGgVTegDaBZHQIWLzNUwSJ11fZQoaAZoCWgPQwj9aDhlbstUQJSGlFKUaBVN6ANoFkdAhZbnuiN83XV9lChoBmgJaA9DCH+hR4we52FAlIaUUpRoFU3oA2gWR0CFl0mqo60ZdX2UKGgGaAloD0MITmGlgoqSK8CUhpRSlGgVTQYBaBZHQIWeWNaQmu11fZQoaAZoCWgPQwjOiT20j8RbQJSGlFKUaBVN6ANoFkdAhZ+ONgjQiXV9lChoBmgJaA9DCA3hmGVPAitAlIaUUpRoFUv+aBZHQIWg++TNdJJ1fZQoaAZoCWgPQwiO6J51DUtjQJSGlFKUaBVN6ANoFkdAhaI5lvqC6HV9lChoBmgJaA9DCGK9UStMG2BAlIaUUpRoFU3oA2gWR0CFpfF8XvYwdX2UKGgGaAloD0MIujKoNrhhYkCUhpRSlGgVTegDaBZHQIXfqylenht1fZQoaAZoCWgPQwhYAimxayVhQJSGlFKUaBVN6ANoFkdAhexkkrwvx3V9lChoBmgJaA9DCIARNGYSJWBAlIaUUpRoFU3oA2gWR0CF+4m7aqS6dX2UKGgGaAloD0MIxk0NNJ8oYUCUhpRSlGgVTegDaBZHQIYCDMvAXVN1fZQoaAZoCWgPQwj6nLtdL5xjQJSGlFKUaBVN6ANoFkdAhgO8wQDmsHV9lChoBmgJaA9DCCfdlsgFIWBAlIaUUpRoFU3oA2gWR0CGJB2xptaZdX2UKGgGaAloD0MICYz1DUzMTUCUhpRSlGgVTegDaBZHQIZEIhhYvFp1fZQoaAZoCWgPQwijPskdNqJWQJSGlFKUaBVN6ANoFkdAhkjcRDkU9XV9lChoBmgJaA9DCB0Dste7ZFRAlIaUUpRoFU3oA2gWR0CGSOnIhhYvdX2UKGgGaAloD0MIj6uRXWkSY0CUhpRSlGgVTegDaBZHQIZW2ruIAOt1fZQoaAZoCWgPQwgH0O/7N+VfQJSGlFKUaBVN6ANoFkdAhldQ5NoJzHV9lChoBmgJaA9DCDwTmiSW2FRAlIaUUpRoFU3oA2gWR0CGXzVUdaMadX2UKGgGaAloD0MIPXyZKEKXVECUhpRSlGgVTegDaBZHQIZgrkMkQf91fZQoaAZoCWgPQwjn49pQMb1dQJSGlFKUaBVN6ANoFkdAhmJSdOIqLHV9lChoBmgJaA9DCJMdG4F4IF5AlIaUUpRoFU3oA2gWR0CGY66S1Vo6dX2UKGgGaAloD0MIEkw1s5biXkCUhpRSlGgVTegDaBZHQIZnoFmnO0N1fZQoaAZoCWgPQwgHYAMixNNdQJSGlFKUaBVN6ANoFkdAhqAcs189fXV9lChoBmgJaA9DCLjlIynpUSVAlIaUUpRoFUvvaBZHQIalPiPyTZB1fZQoaAZoCWgPQwj3yOaq+S1hQJSGlFKUaBVN6ANoFkdAhqu6qKgqVnV9lChoBmgJaA9DCNFZZhGKE09AlIaUUpRoFU3oA2gWR0CGuPWf9P1tdX2UKGgGaAloD0MIhWBVvfy5WkCUhpRSlGgVTegDaBZHQIa+TU1AJLN1fZQoaAZoCWgPQwgR34lZLypcQJSGlFKUaBVN6ANoFkdAhr/UlzEJjXV9lChoBmgJaA9DCOepDrkZCmNAlIaUUpRoFU3oA2gWR0CG2uiKR+z/dX2UKGgGaAloD0MIaafmcoMpKECUhpRSlGgVS+5oFkdAhuFOv2Xb/XV9lChoBmgJaA9DCN51NuSfCFlAlIaUUpRoFU3oA2gWR0CG9+Z/CqIadX2UKGgGaAloD0MI8nhafuDUYECUhpRSlGgVTegDaBZHQIb8PbblA/t1fZQoaAZoCWgPQwhaSwFp/01hQJSGlFKUaBVN6ANoFkdAhvxJb2USqXV9lChoBmgJaA9DCEllijkIiivAlIaUUpRoFUvoaBZHQIb/hmVZ9ux1fZQoaAZoCWgPQwhXsI14Ml1kQJSGlFKUaBVN6ANoFkdAhwjpqIrOJXV9lChoBmgJaA9DCMiYu5aQblpAlIaUUpRoFU3oA2gWR0CHCWs2eg+RdX2UKGgGaAloD0MIQBaiQ2BsZECUhpRSlGgVTegDaBZHQIcQuDpTuOV1fZQoaAZoCWgPQwiSW5NuS3ZeQJSGlFKUaBVN6ANoFkdAhxIcYyfthXV9lChoBmgJaA9DCMxDpnyIz2BAlIaUUpRoFU3oA2gWR0CHFZ1oQFs6dX2UKGgGaAloD0MIjqz8Mph8ZUCUhpRSlGgVTegDaBZHQIcbuQ6p5u91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9230400ea484af1c665f7828e244ac8ef20b8b81643a09de9f571361711cf2e9
3
+ size 147138
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8c4592bb00>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8c4592bb90>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8c4592bc20>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8c4592bcb0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f8c4592bd40>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f8c4592bdd0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8c4592be60>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f8c4592bef0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8c4592bf80>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8c45930050>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8c459300e0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f8c4596ee10>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 507904,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1668551696397924678,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABpZE732jAe6nbW4OgNpNrZJJJs6X+8rtQAAgD8AAIA/TT2aPXtylLrSNoM84q4vufpP37rGNyy4AACAPwAAgD+abR8+I/4xP/OdQL0byVW+0S0BPVmPj70AAAAAAAAAAJNJSL4kWPc+Z9mHPdeqZ74PyqK9hWUKPgAAAAAAAAAAenkGvhb5Nz1mS6+8P7kyvhwkB74sxKy8AAAAAAAAAADAQRc+HPQkvBmtsD2ndg29WW4hvaKvID0AAIA/AACAP+Zgc73POZY+z7FGvpLYrL0QGxe9VPcDvgAAAAAAAAAAwJqnvVwjPbrchxW7b15UNcdqPjoiNik6AACAPwAAgD9mlvS8cb05OKKgfrlDOiw9iCgxO+aLmTsAAIA/AACAP83EMjxX9Uo83EENPX+z+L3npbu9aiEavQAAAAAAAAAAmnGxO1zXLrovHqa7xJ2EtbQ4wbt+38Q6AACAPwAAgD+ag9s9w1FHuj7ksDr+uuU1jp6aOrrIyLkAAIA/AACAPw37pD0KVxw6amalu0WhGD3FJry7rqRpOgAAgD8AAIA/02E/PrlORj9VHFq8Gy8xvkp/kjx7Gu48AAAAAAAAAAC+O7u+nTOTP/jmWb4vlLO+q03CvvhfzTwAAAAAAAAAAJrq/T1dphY/zjhVvQsYX75Hh2G8RuvYPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVdBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIE+8AT1rIFkCUhpRSlIwBbJRLuowBdJRHQINstv/BFd91fZQoaAZoCWgPQwgNUYU/wxsnQJSGlFKUaBVNJQFoFkdAg28Bq9GqgnV9lChoBmgJaA9DCAuXVdgM5lhAlIaUUpRoFU3oA2gWR0CDnXWfbsWwdX2UKGgGaAloD0MIAYkmUMT5XUCUhpRSlGgVTegDaBZHQIOog3Jgb6x1fZQoaAZoCWgPQwg98gcDT7piQJSGlFKUaBVN6ANoFkdAg7whl18stnV9lChoBmgJaA9DCPD8ogR9FGFAlIaUUpRoFU3oA2gWR0CDvWMxXXAedX2UKGgGaAloD0MI3BFOC16iR0CUhpRSlGgVS9toFkdAg982WyC4BnV9lChoBmgJaA9DCPBt+rOfBmNAlIaUUpRoFU3oA2gWR0CD4GsCDEm6dX2UKGgGaAloD0MIkuhlFMvBQkCUhpRSlGgVS+JoFkdAg+Fq64Ds+nV9lChoBmgJaA9DCE0SS8rdiWJAlIaUUpRoFU3oA2gWR0CD8c/gR9PUdX2UKGgGaAloD0MIAWvVrglgW0CUhpRSlGgVTegDaBZHQIP0p/gBLf11fZQoaAZoCWgPQwjGhQMhWbNYQJSGlFKUaBVN6ANoFkdAg/hHvUjLS3V9lChoBmgJaA9DCJHQlnMpBVlAlIaUUpRoFU3oA2gWR0CD/QuU2UB5dX2UKGgGaAloD0MIa2CrBItrKECUhpRSlGgVTRQBaBZHQIQJjnDBMzx1fZQoaAZoCWgPQwiQ2sTJ/RowwJSGlFKUaBVNLwFoFkdAhAxifpUxVXV9lChoBmgJaA9DCMqoMoy75VRAlIaUUpRoFU3oA2gWR0CEGkhrWRRudX2UKGgGaAloD0MICOkpcojgO0CUhpRSlGgVTRIBaBZHQIQatRDTjNp1fZQoaAZoCWgPQwgKoBhZMkJbQJSGlFKUaBVN6ANoFkdAhCaWKl54W3V9lChoBmgJaA9DCN9Szhd76UJAlIaUUpRoFU3oA2gWR0CEJw53C9AYdX2UKGgGaAloD0MI3+ALk6kwYUCUhpRSlGgVTegDaBZHQIQpXnnuAqd1fZQoaAZoCWgPQwiAn3HhwChgQJSGlFKUaBVN6ANoFkdAhCuh6a9bo3V9lChoBmgJaA9DCNwQ4zWvJFtAlIaUUpRoFU3oA2gWR0CELQkrwvxpdX2UKGgGaAloD0MId6OP+YAgVkCUhpRSlGgVTegDaBZHQIQvFGus90R1fZQoaAZoCWgPQwj2fw7z5RlEQJSGlFKUaBVNEgFoFkdAhDFXkgfU4XV9lChoBmgJaA9DCK1sH/KWrF5AlIaUUpRoFU3oA2gWR0CEW/xCIDYAdX2UKGgGaAloD0MIuECC4seIFMCUhpRSlGgVS9JoFkdAhFwXuuzQeHV9lChoBmgJaA9DCCIa3UFs1mJAlIaUUpRoFU3oA2gWR0CEYauSOinHdX2UKGgGaAloD0MI1Lg3v2GxUUCUhpRSlGgVS7poFkdAhGUk3CKrJnV9lChoBmgJaA9DCGx4eqUsfzxAlIaUUpRoFU0vAWgWR0CEb5rD63y7dX2UKGgGaAloD0MIhNOCF31RPcCUhpRSlGgVS/BoFkdAhHTUYbbUPXV9lChoBmgJaA9DCB0Dste7XUNAlIaUUpRoFU0QAWgWR0CEh6XFcY65dX2UKGgGaAloD0MI66urArXFXkCUhpRSlGgVTegDaBZHQISJVaUzKtB1fZQoaAZoCWgPQwh/MsaH2Z9YQJSGlFKUaBVN6ANoFkdAhJroQ4CIUXV9lChoBmgJaA9DCFn7O9sjTGFAlIaUUpRoFU3oA2gWR0CEoeOU+s5odX2UKGgGaAloD0MIn+OjxZnMYUCUhpRSlGgVTegDaBZHQISm3lp48lp1fZQoaAZoCWgPQwgQO1PovERbQJSGlFKUaBVN6ANoFkdAhLNu1F6RhnV9lChoBmgJaA9DCMR6o1aY3VVAlIaUUpRoFU3oA2gWR0CExIIiTt9hdX2UKGgGaAloD0MI2ZlC5zWaWECUhpRSlGgVTegDaBZHQITRyW7e2ux1fZQoaAZoCWgPQwhuv3yyYpFaQJSGlFKUaBVN6ANoFkdAhNJI0ALiM3V9lChoBmgJaA9DCPVHGAYsxltAlIaUUpRoFU3oA2gWR0CE2RJ7LMcIdX2UKGgGaAloD0MI3QiLijj7WUCUhpRSlGgVTegDaBZHQITbdvGZNPB1fZQoaAZoCWgPQwi69C9JZbhKQJSGlFKUaBVN6ANoFkdAhN5d3r2QGXV9lChoBmgJaA9DCGFxOPMrl2BAlIaUUpRoFU3oA2gWR0CFCEmG/N7jdX2UKGgGaAloD0MIFJSilXuhVUCUhpRSlGgVTegDaBZHQIURKgmJFb51fZQoaAZoCWgPQwjYf52bNuO8P5SGlFKUaBVL6GgWR0CFI+vf0mMPdX2UKGgGaAloD0MIaOkKthEeYECUhpRSlGgVTegDaBZHQIUto+jdpIt1fZQoaAZoCWgPQwgFacai6UhYQJSGlFKUaBVN6ANoFkdAhTioexOclXV9lChoBmgJaA9DCE7U0twKqSrAlIaUUpRoFU0PAWgWR0CFTPnM+u/2dX2UKGgGaAloD0MI0NOAQVINYECUhpRSlGgVTegDaBZHQIVVFmSQo1F1fZQoaAZoCWgPQwhoW80646peQJSGlFKUaBVN6ANoFkdAhVatBF/hEXV9lChoBmgJaA9DCCyf5Xlwd+o/lIaUUpRoFUvzaBZHQIVerl/6O5t1fZQoaAZoCWgPQwiTbkvkghlfQJSGlFKUaBVN6ANoFkdAhWZx1HOKO3V9lChoBmgJaA9DCJnTZTGxUU5AlIaUUpRoFU3oA2gWR0CFbJHhCMP0dX2UKGgGaAloD0MIlFD6QsjnXECUhpRSlGgVTegDaBZHQIVw11B+nZV1fZQoaAZoCWgPQwiR7Xw/NaphQJSGlFKUaBVN6ANoFkdAhXxECeVcEHV9lChoBmgJaA9DCFkw8UdRW09AlIaUUpRoFU0EAWgWR0CFgBO32EkCdX2UKGgGaAloD0MI/MQB9Pv+77+UhpRSlGgVTQcBaBZHQIWID59E1EV1fZQoaAZoCWgPQwjnxYmvduw2wJSGlFKUaBVL9GgWR0CFi8S13MY/dX2UKGgGaAloD0MI9diWAefhY0CUhpRSlGgVTegDaBZHQIWLzNUwSJ11fZQoaAZoCWgPQwj9aDhlbstUQJSGlFKUaBVN6ANoFkdAhZbnuiN83XV9lChoBmgJaA9DCH+hR4we52FAlIaUUpRoFU3oA2gWR0CFl0mqo60ZdX2UKGgGaAloD0MITmGlgoqSK8CUhpRSlGgVTQYBaBZHQIWeWNaQmu11fZQoaAZoCWgPQwjOiT20j8RbQJSGlFKUaBVN6ANoFkdAhZ+ONgjQiXV9lChoBmgJaA9DCA3hmGVPAitAlIaUUpRoFUv+aBZHQIWg++TNdJJ1fZQoaAZoCWgPQwiO6J51DUtjQJSGlFKUaBVN6ANoFkdAhaI5lvqC6HV9lChoBmgJaA9DCGK9UStMG2BAlIaUUpRoFU3oA2gWR0CFpfF8XvYwdX2UKGgGaAloD0MIujKoNrhhYkCUhpRSlGgVTegDaBZHQIXfqylenht1fZQoaAZoCWgPQwhYAimxayVhQJSGlFKUaBVN6ANoFkdAhexkkrwvx3V9lChoBmgJaA9DCIARNGYSJWBAlIaUUpRoFU3oA2gWR0CF+4m7aqS6dX2UKGgGaAloD0MIxk0NNJ8oYUCUhpRSlGgVTegDaBZHQIYCDMvAXVN1fZQoaAZoCWgPQwj6nLtdL5xjQJSGlFKUaBVN6ANoFkdAhgO8wQDmsHV9lChoBmgJaA9DCCfdlsgFIWBAlIaUUpRoFU3oA2gWR0CGJB2xptaZdX2UKGgGaAloD0MICYz1DUzMTUCUhpRSlGgVTegDaBZHQIZEIhhYvFp1fZQoaAZoCWgPQwijPskdNqJWQJSGlFKUaBVN6ANoFkdAhkjcRDkU9XV9lChoBmgJaA9DCB0Dste7ZFRAlIaUUpRoFU3oA2gWR0CGSOnIhhYvdX2UKGgGaAloD0MIj6uRXWkSY0CUhpRSlGgVTegDaBZHQIZW2ruIAOt1fZQoaAZoCWgPQwgH0O/7N+VfQJSGlFKUaBVN6ANoFkdAhldQ5NoJzHV9lChoBmgJaA9DCDwTmiSW2FRAlIaUUpRoFU3oA2gWR0CGXzVUdaMadX2UKGgGaAloD0MIPXyZKEKXVECUhpRSlGgVTegDaBZHQIZgrkMkQf91fZQoaAZoCWgPQwjn49pQMb1dQJSGlFKUaBVN6ANoFkdAhmJSdOIqLHV9lChoBmgJaA9DCJMdG4F4IF5AlIaUUpRoFU3oA2gWR0CGY66S1Vo6dX2UKGgGaAloD0MIEkw1s5biXkCUhpRSlGgVTegDaBZHQIZnoFmnO0N1fZQoaAZoCWgPQwgHYAMixNNdQJSGlFKUaBVN6ANoFkdAhqAcs189fXV9lChoBmgJaA9DCLjlIynpUSVAlIaUUpRoFUvvaBZHQIalPiPyTZB1fZQoaAZoCWgPQwj3yOaq+S1hQJSGlFKUaBVN6ANoFkdAhqu6qKgqVnV9lChoBmgJaA9DCNFZZhGKE09AlIaUUpRoFU3oA2gWR0CGuPWf9P1tdX2UKGgGaAloD0MIhWBVvfy5WkCUhpRSlGgVTegDaBZHQIa+TU1AJLN1fZQoaAZoCWgPQwgR34lZLypcQJSGlFKUaBVN6ANoFkdAhr/UlzEJjXV9lChoBmgJaA9DCOepDrkZCmNAlIaUUpRoFU3oA2gWR0CG2uiKR+z/dX2UKGgGaAloD0MIaafmcoMpKECUhpRSlGgVS+5oFkdAhuFOv2Xb/XV9lChoBmgJaA9DCN51NuSfCFlAlIaUUpRoFU3oA2gWR0CG9+Z/CqIadX2UKGgGaAloD0MI8nhafuDUYECUhpRSlGgVTegDaBZHQIb8PbblA/t1fZQoaAZoCWgPQwhaSwFp/01hQJSGlFKUaBVN6ANoFkdAhvxJb2USqXV9lChoBmgJaA9DCEllijkIiivAlIaUUpRoFUvoaBZHQIb/hmVZ9ux1fZQoaAZoCWgPQwhXsI14Ml1kQJSGlFKUaBVN6ANoFkdAhwjpqIrOJXV9lChoBmgJaA9DCMiYu5aQblpAlIaUUpRoFU3oA2gWR0CHCWs2eg+RdX2UKGgGaAloD0MIQBaiQ2BsZECUhpRSlGgVTegDaBZHQIcQuDpTuOV1fZQoaAZoCWgPQwiSW5NuS3ZeQJSGlFKUaBVN6ANoFkdAhxIcYyfthXV9lChoBmgJaA9DCMxDpnyIz2BAlIaUUpRoFU3oA2gWR0CHFZ1oQFs6dX2UKGgGaAloD0MIjqz8Mph8ZUCUhpRSlGgVTegDaBZHQIcbuQ6p5u91ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 124,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1fc44c86fddd9cbc19511586c3438fcf8b9a4f96fa638b435d4e6d5e01d0dbed
3
+ size 87865
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:24866e42d979c317103883482ebf12cc02a6c7d2dab26d5280145ced3e6f4970
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.7.15
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.12.1+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (258 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 219.7521385147861, "std_reward": 21.35639310474203, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-11-15T22:50:41.457034"}