Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 219.75 +/- 21.36
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8c4592bb00>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8c4592bb90>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8c4592bc20>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8c4592bcb0>", "_build": "<function ActorCriticPolicy._build at 0x7f8c4592bd40>", "forward": "<function ActorCriticPolicy.forward at 0x7f8c4592bdd0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8c4592be60>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8c4592bef0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8c4592bf80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8c45930050>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8c459300e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8c4596ee10>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1668551696397924678, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABpZE732jAe6nbW4OgNpNrZJJJs6X+8rtQAAgD8AAIA/TT2aPXtylLrSNoM84q4vufpP37rGNyy4AACAPwAAgD+abR8+I/4xP/OdQL0byVW+0S0BPVmPj70AAAAAAAAAAJNJSL4kWPc+Z9mHPdeqZ74PyqK9hWUKPgAAAAAAAAAAenkGvhb5Nz1mS6+8P7kyvhwkB74sxKy8AAAAAAAAAADAQRc+HPQkvBmtsD2ndg29WW4hvaKvID0AAIA/AACAP+Zgc73POZY+z7FGvpLYrL0QGxe9VPcDvgAAAAAAAAAAwJqnvVwjPbrchxW7b15UNcdqPjoiNik6AACAPwAAgD9mlvS8cb05OKKgfrlDOiw9iCgxO+aLmTsAAIA/AACAP83EMjxX9Uo83EENPX+z+L3npbu9aiEavQAAAAAAAAAAmnGxO1zXLrovHqa7xJ2EtbQ4wbt+38Q6AACAPwAAgD+ag9s9w1FHuj7ksDr+uuU1jp6aOrrIyLkAAIA/AACAPw37pD0KVxw6amalu0WhGD3FJry7rqRpOgAAgD8AAIA/02E/PrlORj9VHFq8Gy8xvkp/kjx7Gu48AAAAAAAAAAC+O7u+nTOTP/jmWb4vlLO+q03CvvhfzTwAAAAAAAAAAJrq/T1dphY/zjhVvQsYX75Hh2G8RuvYPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIE+8AT1rIFkCUhpRSlIwBbJRLuowBdJRHQINstv/BFd91fZQoaAZoCWgPQwgNUYU/wxsnQJSGlFKUaBVNJQFoFkdAg28Bq9GqgnV9lChoBmgJaA9DCAuXVdgM5lhAlIaUUpRoFU3oA2gWR0CDnXWfbsWwdX2UKGgGaAloD0MIAYkmUMT5XUCUhpRSlGgVTegDaBZHQIOog3Jgb6x1fZQoaAZoCWgPQwg98gcDT7piQJSGlFKUaBVN6ANoFkdAg7whl18stnV9lChoBmgJaA9DCPD8ogR9FGFAlIaUUpRoFU3oA2gWR0CDvWMxXXAedX2UKGgGaAloD0MI3BFOC16iR0CUhpRSlGgVS9toFkdAg982WyC4BnV9lChoBmgJaA9DCPBt+rOfBmNAlIaUUpRoFU3oA2gWR0CD4GsCDEm6dX2UKGgGaAloD0MIkuhlFMvBQkCUhpRSlGgVS+JoFkdAg+Fq64Ds+nV9lChoBmgJaA9DCE0SS8rdiWJAlIaUUpRoFU3oA2gWR0CD8c/gR9PUdX2UKGgGaAloD0MIAWvVrglgW0CUhpRSlGgVTegDaBZHQIP0p/gBLf11fZQoaAZoCWgPQwjGhQMhWbNYQJSGlFKUaBVN6ANoFkdAg/hHvUjLS3V9lChoBmgJaA9DCJHQlnMpBVlAlIaUUpRoFU3oA2gWR0CD/QuU2UB5dX2UKGgGaAloD0MIa2CrBItrKECUhpRSlGgVTRQBaBZHQIQJjnDBMzx1fZQoaAZoCWgPQwiQ2sTJ/RowwJSGlFKUaBVNLwFoFkdAhAxifpUxVXV9lChoBmgJaA9DCMqoMoy75VRAlIaUUpRoFU3oA2gWR0CEGkhrWRRudX2UKGgGaAloD0MICOkpcojgO0CUhpRSlGgVTRIBaBZHQIQatRDTjNp1fZQoaAZoCWgPQwgKoBhZMkJbQJSGlFKUaBVN6ANoFkdAhCaWKl54W3V9lChoBmgJaA9DCN9Szhd76UJAlIaUUpRoFU3oA2gWR0CEJw53C9AYdX2UKGgGaAloD0MI3+ALk6kwYUCUhpRSlGgVTegDaBZHQIQpXnnuAqd1fZQoaAZoCWgPQwiAn3HhwChgQJSGlFKUaBVN6ANoFkdAhCuh6a9bo3V9lChoBmgJaA9DCNwQ4zWvJFtAlIaUUpRoFU3oA2gWR0CELQkrwvxpdX2UKGgGaAloD0MId6OP+YAgVkCUhpRSlGgVTegDaBZHQIQvFGus90R1fZQoaAZoCWgPQwj2fw7z5RlEQJSGlFKUaBVNEgFoFkdAhDFXkgfU4XV9lChoBmgJaA9DCK1sH/KWrF5AlIaUUpRoFU3oA2gWR0CEW/xCIDYAdX2UKGgGaAloD0MIuECC4seIFMCUhpRSlGgVS9JoFkdAhFwXuuzQeHV9lChoBmgJaA9DCCIa3UFs1mJAlIaUUpRoFU3oA2gWR0CEYauSOinHdX2UKGgGaAloD0MI1Lg3v2GxUUCUhpRSlGgVS7poFkdAhGUk3CKrJnV9lChoBmgJaA9DCGx4eqUsfzxAlIaUUpRoFU0vAWgWR0CEb5rD63y7dX2UKGgGaAloD0MIhNOCF31RPcCUhpRSlGgVS/BoFkdAhHTUYbbUPXV9lChoBmgJaA9DCB0Dste7XUNAlIaUUpRoFU0QAWgWR0CEh6XFcY65dX2UKGgGaAloD0MI66urArXFXkCUhpRSlGgVTegDaBZHQISJVaUzKtB1fZQoaAZoCWgPQwh/MsaH2Z9YQJSGlFKUaBVN6ANoFkdAhJroQ4CIUXV9lChoBmgJaA9DCFn7O9sjTGFAlIaUUpRoFU3oA2gWR0CEoeOU+s5odX2UKGgGaAloD0MIn+OjxZnMYUCUhpRSlGgVTegDaBZHQISm3lp48lp1fZQoaAZoCWgPQwgQO1PovERbQJSGlFKUaBVN6ANoFkdAhLNu1F6RhnV9lChoBmgJaA9DCMR6o1aY3VVAlIaUUpRoFU3oA2gWR0CExIIiTt9hdX2UKGgGaAloD0MI2ZlC5zWaWECUhpRSlGgVTegDaBZHQITRyW7e2ux1fZQoaAZoCWgPQwhuv3yyYpFaQJSGlFKUaBVN6ANoFkdAhNJI0ALiM3V9lChoBmgJaA9DCPVHGAYsxltAlIaUUpRoFU3oA2gWR0CE2RJ7LMcIdX2UKGgGaAloD0MI3QiLijj7WUCUhpRSlGgVTegDaBZHQITbdvGZNPB1fZQoaAZoCWgPQwi69C9JZbhKQJSGlFKUaBVN6ANoFkdAhN5d3r2QGXV9lChoBmgJaA9DCGFxOPMrl2BAlIaUUpRoFU3oA2gWR0CFCEmG/N7jdX2UKGgGaAloD0MIFJSilXuhVUCUhpRSlGgVTegDaBZHQIURKgmJFb51fZQoaAZoCWgPQwjYf52bNuO8P5SGlFKUaBVL6GgWR0CFI+vf0mMPdX2UKGgGaAloD0MIaOkKthEeYECUhpRSlGgVTegDaBZHQIUto+jdpIt1fZQoaAZoCWgPQwgFacai6UhYQJSGlFKUaBVN6ANoFkdAhTioexOclXV9lChoBmgJaA9DCE7U0twKqSrAlIaUUpRoFU0PAWgWR0CFTPnM+u/2dX2UKGgGaAloD0MI0NOAQVINYECUhpRSlGgVTegDaBZHQIVVFmSQo1F1fZQoaAZoCWgPQwhoW80646peQJSGlFKUaBVN6ANoFkdAhVatBF/hEXV9lChoBmgJaA9DCCyf5Xlwd+o/lIaUUpRoFUvzaBZHQIVerl/6O5t1fZQoaAZoCWgPQwiTbkvkghlfQJSGlFKUaBVN6ANoFkdAhWZx1HOKO3V9lChoBmgJaA9DCJnTZTGxUU5AlIaUUpRoFU3oA2gWR0CFbJHhCMP0dX2UKGgGaAloD0MIlFD6QsjnXECUhpRSlGgVTegDaBZHQIVw11B+nZV1fZQoaAZoCWgPQwiR7Xw/NaphQJSGlFKUaBVN6ANoFkdAhXxECeVcEHV9lChoBmgJaA9DCFkw8UdRW09AlIaUUpRoFU0EAWgWR0CFgBO32EkCdX2UKGgGaAloD0MI/MQB9Pv+77+UhpRSlGgVTQcBaBZHQIWID59E1EV1fZQoaAZoCWgPQwjnxYmvduw2wJSGlFKUaBVL9GgWR0CFi8S13MY/dX2UKGgGaAloD0MI9diWAefhY0CUhpRSlGgVTegDaBZHQIWLzNUwSJ11fZQoaAZoCWgPQwj9aDhlbstUQJSGlFKUaBVN6ANoFkdAhZbnuiN83XV9lChoBmgJaA9DCH+hR4we52FAlIaUUpRoFU3oA2gWR0CFl0mqo60ZdX2UKGgGaAloD0MITmGlgoqSK8CUhpRSlGgVTQYBaBZHQIWeWNaQmu11fZQoaAZoCWgPQwjOiT20j8RbQJSGlFKUaBVN6ANoFkdAhZ+ONgjQiXV9lChoBmgJaA9DCA3hmGVPAitAlIaUUpRoFUv+aBZHQIWg++TNdJJ1fZQoaAZoCWgPQwiO6J51DUtjQJSGlFKUaBVN6ANoFkdAhaI5lvqC6HV9lChoBmgJaA9DCGK9UStMG2BAlIaUUpRoFU3oA2gWR0CFpfF8XvYwdX2UKGgGaAloD0MIujKoNrhhYkCUhpRSlGgVTegDaBZHQIXfqylenht1fZQoaAZoCWgPQwhYAimxayVhQJSGlFKUaBVN6ANoFkdAhexkkrwvx3V9lChoBmgJaA9DCIARNGYSJWBAlIaUUpRoFU3oA2gWR0CF+4m7aqS6dX2UKGgGaAloD0MIxk0NNJ8oYUCUhpRSlGgVTegDaBZHQIYCDMvAXVN1fZQoaAZoCWgPQwj6nLtdL5xjQJSGlFKUaBVN6ANoFkdAhgO8wQDmsHV9lChoBmgJaA9DCCfdlsgFIWBAlIaUUpRoFU3oA2gWR0CGJB2xptaZdX2UKGgGaAloD0MICYz1DUzMTUCUhpRSlGgVTegDaBZHQIZEIhhYvFp1fZQoaAZoCWgPQwijPskdNqJWQJSGlFKUaBVN6ANoFkdAhkjcRDkU9XV9lChoBmgJaA9DCB0Dste7ZFRAlIaUUpRoFU3oA2gWR0CGSOnIhhYvdX2UKGgGaAloD0MIj6uRXWkSY0CUhpRSlGgVTegDaBZHQIZW2ruIAOt1fZQoaAZoCWgPQwgH0O/7N+VfQJSGlFKUaBVN6ANoFkdAhldQ5NoJzHV9lChoBmgJaA9DCDwTmiSW2FRAlIaUUpRoFU3oA2gWR0CGXzVUdaMadX2UKGgGaAloD0MIPXyZKEKXVECUhpRSlGgVTegDaBZHQIZgrkMkQf91fZQoaAZoCWgPQwjn49pQMb1dQJSGlFKUaBVN6ANoFkdAhmJSdOIqLHV9lChoBmgJaA9DCJMdG4F4IF5AlIaUUpRoFU3oA2gWR0CGY66S1Vo6dX2UKGgGaAloD0MIEkw1s5biXkCUhpRSlGgVTegDaBZHQIZnoFmnO0N1fZQoaAZoCWgPQwgHYAMixNNdQJSGlFKUaBVN6ANoFkdAhqAcs189fXV9lChoBmgJaA9DCLjlIynpUSVAlIaUUpRoFUvvaBZHQIalPiPyTZB1fZQoaAZoCWgPQwj3yOaq+S1hQJSGlFKUaBVN6ANoFkdAhqu6qKgqVnV9lChoBmgJaA9DCNFZZhGKE09AlIaUUpRoFU3oA2gWR0CGuPWf9P1tdX2UKGgGaAloD0MIhWBVvfy5WkCUhpRSlGgVTegDaBZHQIa+TU1AJLN1fZQoaAZoCWgPQwgR34lZLypcQJSGlFKUaBVN6ANoFkdAhr/UlzEJjXV9lChoBmgJaA9DCOepDrkZCmNAlIaUUpRoFU3oA2gWR0CG2uiKR+z/dX2UKGgGaAloD0MIaafmcoMpKECUhpRSlGgVS+5oFkdAhuFOv2Xb/XV9lChoBmgJaA9DCN51NuSfCFlAlIaUUpRoFU3oA2gWR0CG9+Z/CqIadX2UKGgGaAloD0MI8nhafuDUYECUhpRSlGgVTegDaBZHQIb8PbblA/t1fZQoaAZoCWgPQwhaSwFp/01hQJSGlFKUaBVN6ANoFkdAhvxJb2USqXV9lChoBmgJaA9DCEllijkIiivAlIaUUpRoFUvoaBZHQIb/hmVZ9ux1fZQoaAZoCWgPQwhXsI14Ml1kQJSGlFKUaBVN6ANoFkdAhwjpqIrOJXV9lChoBmgJaA9DCMiYu5aQblpAlIaUUpRoFU3oA2gWR0CHCWs2eg+RdX2UKGgGaAloD0MIQBaiQ2BsZECUhpRSlGgVTegDaBZHQIcQuDpTuOV1fZQoaAZoCWgPQwiSW5NuS3ZeQJSGlFKUaBVN6ANoFkdAhxIcYyfthXV9lChoBmgJaA9DCMxDpnyIz2BAlIaUUpRoFU3oA2gWR0CHFZ1oQFs6dX2UKGgGaAloD0MIjqz8Mph8ZUCUhpRSlGgVTegDaBZHQIcbuQ6p5u91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9230400ea484af1c665f7828e244ac8ef20b8b81643a09de9f571361711cf2e9
|
3 |
+
size 147138
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f8c4592bb00>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8c4592bb90>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8c4592bc20>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8c4592bcb0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f8c4592bd40>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f8c4592bdd0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8c4592be60>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f8c4592bef0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8c4592bf80>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8c45930050>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8c459300e0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f8c4596ee10>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1668551696397924678,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABpZE732jAe6nbW4OgNpNrZJJJs6X+8rtQAAgD8AAIA/TT2aPXtylLrSNoM84q4vufpP37rGNyy4AACAPwAAgD+abR8+I/4xP/OdQL0byVW+0S0BPVmPj70AAAAAAAAAAJNJSL4kWPc+Z9mHPdeqZ74PyqK9hWUKPgAAAAAAAAAAenkGvhb5Nz1mS6+8P7kyvhwkB74sxKy8AAAAAAAAAADAQRc+HPQkvBmtsD2ndg29WW4hvaKvID0AAIA/AACAP+Zgc73POZY+z7FGvpLYrL0QGxe9VPcDvgAAAAAAAAAAwJqnvVwjPbrchxW7b15UNcdqPjoiNik6AACAPwAAgD9mlvS8cb05OKKgfrlDOiw9iCgxO+aLmTsAAIA/AACAP83EMjxX9Uo83EENPX+z+L3npbu9aiEavQAAAAAAAAAAmnGxO1zXLrovHqa7xJ2EtbQ4wbt+38Q6AACAPwAAgD+ag9s9w1FHuj7ksDr+uuU1jp6aOrrIyLkAAIA/AACAPw37pD0KVxw6amalu0WhGD3FJry7rqRpOgAAgD8AAIA/02E/PrlORj9VHFq8Gy8xvkp/kjx7Gu48AAAAAAAAAAC+O7u+nTOTP/jmWb4vlLO+q03CvvhfzTwAAAAAAAAAAJrq/T1dphY/zjhVvQsYX75Hh2G8RuvYPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVdBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIE+8AT1rIFkCUhpRSlIwBbJRLuowBdJRHQINstv/BFd91fZQoaAZoCWgPQwgNUYU/wxsnQJSGlFKUaBVNJQFoFkdAg28Bq9GqgnV9lChoBmgJaA9DCAuXVdgM5lhAlIaUUpRoFU3oA2gWR0CDnXWfbsWwdX2UKGgGaAloD0MIAYkmUMT5XUCUhpRSlGgVTegDaBZHQIOog3Jgb6x1fZQoaAZoCWgPQwg98gcDT7piQJSGlFKUaBVN6ANoFkdAg7whl18stnV9lChoBmgJaA9DCPD8ogR9FGFAlIaUUpRoFU3oA2gWR0CDvWMxXXAedX2UKGgGaAloD0MI3BFOC16iR0CUhpRSlGgVS9toFkdAg982WyC4BnV9lChoBmgJaA9DCPBt+rOfBmNAlIaUUpRoFU3oA2gWR0CD4GsCDEm6dX2UKGgGaAloD0MIkuhlFMvBQkCUhpRSlGgVS+JoFkdAg+Fq64Ds+nV9lChoBmgJaA9DCE0SS8rdiWJAlIaUUpRoFU3oA2gWR0CD8c/gR9PUdX2UKGgGaAloD0MIAWvVrglgW0CUhpRSlGgVTegDaBZHQIP0p/gBLf11fZQoaAZoCWgPQwjGhQMhWbNYQJSGlFKUaBVN6ANoFkdAg/hHvUjLS3V9lChoBmgJaA9DCJHQlnMpBVlAlIaUUpRoFU3oA2gWR0CD/QuU2UB5dX2UKGgGaAloD0MIa2CrBItrKECUhpRSlGgVTRQBaBZHQIQJjnDBMzx1fZQoaAZoCWgPQwiQ2sTJ/RowwJSGlFKUaBVNLwFoFkdAhAxifpUxVXV9lChoBmgJaA9DCMqoMoy75VRAlIaUUpRoFU3oA2gWR0CEGkhrWRRudX2UKGgGaAloD0MICOkpcojgO0CUhpRSlGgVTRIBaBZHQIQatRDTjNp1fZQoaAZoCWgPQwgKoBhZMkJbQJSGlFKUaBVN6ANoFkdAhCaWKl54W3V9lChoBmgJaA9DCN9Szhd76UJAlIaUUpRoFU3oA2gWR0CEJw53C9AYdX2UKGgGaAloD0MI3+ALk6kwYUCUhpRSlGgVTegDaBZHQIQpXnnuAqd1fZQoaAZoCWgPQwiAn3HhwChgQJSGlFKUaBVN6ANoFkdAhCuh6a9bo3V9lChoBmgJaA9DCNwQ4zWvJFtAlIaUUpRoFU3oA2gWR0CELQkrwvxpdX2UKGgGaAloD0MId6OP+YAgVkCUhpRSlGgVTegDaBZHQIQvFGus90R1fZQoaAZoCWgPQwj2fw7z5RlEQJSGlFKUaBVNEgFoFkdAhDFXkgfU4XV9lChoBmgJaA9DCK1sH/KWrF5AlIaUUpRoFU3oA2gWR0CEW/xCIDYAdX2UKGgGaAloD0MIuECC4seIFMCUhpRSlGgVS9JoFkdAhFwXuuzQeHV9lChoBmgJaA9DCCIa3UFs1mJAlIaUUpRoFU3oA2gWR0CEYauSOinHdX2UKGgGaAloD0MI1Lg3v2GxUUCUhpRSlGgVS7poFkdAhGUk3CKrJnV9lChoBmgJaA9DCGx4eqUsfzxAlIaUUpRoFU0vAWgWR0CEb5rD63y7dX2UKGgGaAloD0MIhNOCF31RPcCUhpRSlGgVS/BoFkdAhHTUYbbUPXV9lChoBmgJaA9DCB0Dste7XUNAlIaUUpRoFU0QAWgWR0CEh6XFcY65dX2UKGgGaAloD0MI66urArXFXkCUhpRSlGgVTegDaBZHQISJVaUzKtB1fZQoaAZoCWgPQwh/MsaH2Z9YQJSGlFKUaBVN6ANoFkdAhJroQ4CIUXV9lChoBmgJaA9DCFn7O9sjTGFAlIaUUpRoFU3oA2gWR0CEoeOU+s5odX2UKGgGaAloD0MIn+OjxZnMYUCUhpRSlGgVTegDaBZHQISm3lp48lp1fZQoaAZoCWgPQwgQO1PovERbQJSGlFKUaBVN6ANoFkdAhLNu1F6RhnV9lChoBmgJaA9DCMR6o1aY3VVAlIaUUpRoFU3oA2gWR0CExIIiTt9hdX2UKGgGaAloD0MI2ZlC5zWaWECUhpRSlGgVTegDaBZHQITRyW7e2ux1fZQoaAZoCWgPQwhuv3yyYpFaQJSGlFKUaBVN6ANoFkdAhNJI0ALiM3V9lChoBmgJaA9DCPVHGAYsxltAlIaUUpRoFU3oA2gWR0CE2RJ7LMcIdX2UKGgGaAloD0MI3QiLijj7WUCUhpRSlGgVTegDaBZHQITbdvGZNPB1fZQoaAZoCWgPQwi69C9JZbhKQJSGlFKUaBVN6ANoFkdAhN5d3r2QGXV9lChoBmgJaA9DCGFxOPMrl2BAlIaUUpRoFU3oA2gWR0CFCEmG/N7jdX2UKGgGaAloD0MIFJSilXuhVUCUhpRSlGgVTegDaBZHQIURKgmJFb51fZQoaAZoCWgPQwjYf52bNuO8P5SGlFKUaBVL6GgWR0CFI+vf0mMPdX2UKGgGaAloD0MIaOkKthEeYECUhpRSlGgVTegDaBZHQIUto+jdpIt1fZQoaAZoCWgPQwgFacai6UhYQJSGlFKUaBVN6ANoFkdAhTioexOclXV9lChoBmgJaA9DCE7U0twKqSrAlIaUUpRoFU0PAWgWR0CFTPnM+u/2dX2UKGgGaAloD0MI0NOAQVINYECUhpRSlGgVTegDaBZHQIVVFmSQo1F1fZQoaAZoCWgPQwhoW80646peQJSGlFKUaBVN6ANoFkdAhVatBF/hEXV9lChoBmgJaA9DCCyf5Xlwd+o/lIaUUpRoFUvzaBZHQIVerl/6O5t1fZQoaAZoCWgPQwiTbkvkghlfQJSGlFKUaBVN6ANoFkdAhWZx1HOKO3V9lChoBmgJaA9DCJnTZTGxUU5AlIaUUpRoFU3oA2gWR0CFbJHhCMP0dX2UKGgGaAloD0MIlFD6QsjnXECUhpRSlGgVTegDaBZHQIVw11B+nZV1fZQoaAZoCWgPQwiR7Xw/NaphQJSGlFKUaBVN6ANoFkdAhXxECeVcEHV9lChoBmgJaA9DCFkw8UdRW09AlIaUUpRoFU0EAWgWR0CFgBO32EkCdX2UKGgGaAloD0MI/MQB9Pv+77+UhpRSlGgVTQcBaBZHQIWID59E1EV1fZQoaAZoCWgPQwjnxYmvduw2wJSGlFKUaBVL9GgWR0CFi8S13MY/dX2UKGgGaAloD0MI9diWAefhY0CUhpRSlGgVTegDaBZHQIWLzNUwSJ11fZQoaAZoCWgPQwj9aDhlbstUQJSGlFKUaBVN6ANoFkdAhZbnuiN83XV9lChoBmgJaA9DCH+hR4we52FAlIaUUpRoFU3oA2gWR0CFl0mqo60ZdX2UKGgGaAloD0MITmGlgoqSK8CUhpRSlGgVTQYBaBZHQIWeWNaQmu11fZQoaAZoCWgPQwjOiT20j8RbQJSGlFKUaBVN6ANoFkdAhZ+ONgjQiXV9lChoBmgJaA9DCA3hmGVPAitAlIaUUpRoFUv+aBZHQIWg++TNdJJ1fZQoaAZoCWgPQwiO6J51DUtjQJSGlFKUaBVN6ANoFkdAhaI5lvqC6HV9lChoBmgJaA9DCGK9UStMG2BAlIaUUpRoFU3oA2gWR0CFpfF8XvYwdX2UKGgGaAloD0MIujKoNrhhYkCUhpRSlGgVTegDaBZHQIXfqylenht1fZQoaAZoCWgPQwhYAimxayVhQJSGlFKUaBVN6ANoFkdAhexkkrwvx3V9lChoBmgJaA9DCIARNGYSJWBAlIaUUpRoFU3oA2gWR0CF+4m7aqS6dX2UKGgGaAloD0MIxk0NNJ8oYUCUhpRSlGgVTegDaBZHQIYCDMvAXVN1fZQoaAZoCWgPQwj6nLtdL5xjQJSGlFKUaBVN6ANoFkdAhgO8wQDmsHV9lChoBmgJaA9DCCfdlsgFIWBAlIaUUpRoFU3oA2gWR0CGJB2xptaZdX2UKGgGaAloD0MICYz1DUzMTUCUhpRSlGgVTegDaBZHQIZEIhhYvFp1fZQoaAZoCWgPQwijPskdNqJWQJSGlFKUaBVN6ANoFkdAhkjcRDkU9XV9lChoBmgJaA9DCB0Dste7ZFRAlIaUUpRoFU3oA2gWR0CGSOnIhhYvdX2UKGgGaAloD0MIj6uRXWkSY0CUhpRSlGgVTegDaBZHQIZW2ruIAOt1fZQoaAZoCWgPQwgH0O/7N+VfQJSGlFKUaBVN6ANoFkdAhldQ5NoJzHV9lChoBmgJaA9DCDwTmiSW2FRAlIaUUpRoFU3oA2gWR0CGXzVUdaMadX2UKGgGaAloD0MIPXyZKEKXVECUhpRSlGgVTegDaBZHQIZgrkMkQf91fZQoaAZoCWgPQwjn49pQMb1dQJSGlFKUaBVN6ANoFkdAhmJSdOIqLHV9lChoBmgJaA9DCJMdG4F4IF5AlIaUUpRoFU3oA2gWR0CGY66S1Vo6dX2UKGgGaAloD0MIEkw1s5biXkCUhpRSlGgVTegDaBZHQIZnoFmnO0N1fZQoaAZoCWgPQwgHYAMixNNdQJSGlFKUaBVN6ANoFkdAhqAcs189fXV9lChoBmgJaA9DCLjlIynpUSVAlIaUUpRoFUvvaBZHQIalPiPyTZB1fZQoaAZoCWgPQwj3yOaq+S1hQJSGlFKUaBVN6ANoFkdAhqu6qKgqVnV9lChoBmgJaA9DCNFZZhGKE09AlIaUUpRoFU3oA2gWR0CGuPWf9P1tdX2UKGgGaAloD0MIhWBVvfy5WkCUhpRSlGgVTegDaBZHQIa+TU1AJLN1fZQoaAZoCWgPQwgR34lZLypcQJSGlFKUaBVN6ANoFkdAhr/UlzEJjXV9lChoBmgJaA9DCOepDrkZCmNAlIaUUpRoFU3oA2gWR0CG2uiKR+z/dX2UKGgGaAloD0MIaafmcoMpKECUhpRSlGgVS+5oFkdAhuFOv2Xb/XV9lChoBmgJaA9DCN51NuSfCFlAlIaUUpRoFU3oA2gWR0CG9+Z/CqIadX2UKGgGaAloD0MI8nhafuDUYECUhpRSlGgVTegDaBZHQIb8PbblA/t1fZQoaAZoCWgPQwhaSwFp/01hQJSGlFKUaBVN6ANoFkdAhvxJb2USqXV9lChoBmgJaA9DCEllijkIiivAlIaUUpRoFUvoaBZHQIb/hmVZ9ux1fZQoaAZoCWgPQwhXsI14Ml1kQJSGlFKUaBVN6ANoFkdAhwjpqIrOJXV9lChoBmgJaA9DCMiYu5aQblpAlIaUUpRoFU3oA2gWR0CHCWs2eg+RdX2UKGgGaAloD0MIQBaiQ2BsZECUhpRSlGgVTegDaBZHQIcQuDpTuOV1fZQoaAZoCWgPQwiSW5NuS3ZeQJSGlFKUaBVN6ANoFkdAhxIcYyfthXV9lChoBmgJaA9DCMxDpnyIz2BAlIaUUpRoFU3oA2gWR0CHFZ1oQFs6dX2UKGgGaAloD0MIjqz8Mph8ZUCUhpRSlGgVTegDaBZHQIcbuQ6p5u91ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1fc44c86fddd9cbc19511586c3438fcf8b9a4f96fa638b435d4e6d5e01d0dbed
|
3 |
+
size 87865
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:24866e42d979c317103883482ebf12cc02a6c7d2dab26d5280145ced3e6f4970
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.7.15
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.12.1+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (258 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 219.7521385147861, "std_reward": 21.35639310474203, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-11-15T22:50:41.457034"}
|