student-abdullah
commited on
Commit
•
0637b0e
1
Parent(s):
2030587
Upload llama_3_1_8b_+_unsloth_2x_faster_finetuning.py
Browse files
llama_3_1_8b_+_unsloth_2x_faster_finetuning.py
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""Mine Llama-3.1 8b + Unsloth 2x faster finetuning.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1eI70VMZWms-GCr4j3vf-tcprenY6JCnP
|
8 |
+
"""
|
9 |
+
|
10 |
+
# Commented out IPython magic to ensure Python compatibility.
|
11 |
+
# %%capture
|
12 |
+
# # Installs Unsloth, Xformers (Flash Attention) and all other packages!
|
13 |
+
# !pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
|
14 |
+
#
|
15 |
+
# # We have to check which Torch version for Xformers (2.3 -> 0.0.27)
|
16 |
+
# from torch import __version__; from packaging.version import Version as V
|
17 |
+
# xformers = "xformers==0.0.27" if V(__version__) < V("2.4.0") else "xformers"
|
18 |
+
# !pip install --no-deps {xformers} trl peft accelerate bitsandbytes triton
|
19 |
+
|
20 |
+
from unsloth import FastLanguageModel
|
21 |
+
import torch
|
22 |
+
max_seq_length = 512 # Choose any! We auto support RoPE Scaling internally!
|
23 |
+
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
|
24 |
+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
|
25 |
+
|
26 |
+
# 4bit pre quantized models we support for 4x faster downloading + no OOMs.
|
27 |
+
fourbit_models = [
|
28 |
+
"unsloth/Meta-Llama-3.1-8B-bnb-4bit", # Llama-3.1 15 trillion tokens model 2x faster!
|
29 |
+
"unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit",
|
30 |
+
"unsloth/Meta-Llama-3.1-70B-bnb-4bit",
|
31 |
+
"unsloth/Meta-Llama-3.1-405B-bnb-4bit", # We also uploaded 4bit for 405b!
|
32 |
+
"unsloth/Mistral-Nemo-Base-2407-bnb-4bit", # New Mistral 12b 2x faster!
|
33 |
+
"unsloth/Mistral-Nemo-Instruct-2407-bnb-4bit",
|
34 |
+
"unsloth/mistral-7b-v0.3-bnb-4bit", # Mistral v3 2x faster!
|
35 |
+
"unsloth/mistral-7b-instruct-v0.3-bnb-4bit",
|
36 |
+
"unsloth/Phi-3.5-mini-instruct", # Phi-3.5 2x faster!
|
37 |
+
"unsloth/Phi-3-medium-4k-instruct",
|
38 |
+
"unsloth/gemma-2-9b-bnb-4bit",
|
39 |
+
"unsloth/gemma-2-27b-bnb-4bit", # Gemma 2x faster!
|
40 |
+
] # More models at https://huggingface.co/unsloth
|
41 |
+
|
42 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
43 |
+
model_name = "meta-llama/Meta-Llama-3.1-8B",
|
44 |
+
max_seq_length = max_seq_length,
|
45 |
+
dtype = dtype,
|
46 |
+
load_in_4bit = load_in_4bit,
|
47 |
+
# token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf
|
48 |
+
)
|
49 |
+
|
50 |
+
model = FastLanguageModel.get_peft_model(
|
51 |
+
model,
|
52 |
+
r = 128, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128
|
53 |
+
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
|
54 |
+
"gate_proj", "up_proj", "down_proj",],
|
55 |
+
lora_alpha = 10,
|
56 |
+
lora_dropout = 0, # Supports any, but = 0 is optimized
|
57 |
+
bias = "none", # Supports any, but = "none" is optimized
|
58 |
+
# [NEW] "unsloth" uses 30% less VRAM, fits 2x larger batch sizes!
|
59 |
+
use_gradient_checkpointing = "unsloth", # True or "unsloth" for very long context
|
60 |
+
random_state = 3407,
|
61 |
+
use_rslora = False, # We support rank stabilized LoRA
|
62 |
+
loftq_config = None, # And LoftQ
|
63 |
+
)
|
64 |
+
|
65 |
+
alpaca_prompt = """Below is a conversation between a healthcare provider and a patient. The healthcare provider should respond appropriately to the patient's query.
|
66 |
+
|
67 |
+
### Question:
|
68 |
+
{}
|
69 |
+
|
70 |
+
### Response:
|
71 |
+
{}"""
|
72 |
+
|
73 |
+
EOS_TOKEN = tokenizer.eos_token # Must add EOS_TOKEN
|
74 |
+
|
75 |
+
def formatting_prompts_func(examples):
|
76 |
+
# contexts = examples["Context"]
|
77 |
+
questions = examples["Question"]
|
78 |
+
answers = examples["Answer"]
|
79 |
+
texts = []
|
80 |
+
for question, answer in zip(questions, answers):
|
81 |
+
# Must add EOS_TOKEN, otherwise your generation will go on forever!
|
82 |
+
text = alpaca_prompt.format(question, answer) + EOS_TOKEN
|
83 |
+
texts.append(text)
|
84 |
+
return {"text": texts}
|
85 |
+
|
86 |
+
import pandas as pd
|
87 |
+
from datasets import Dataset, DatasetDict
|
88 |
+
from sklearn.model_selection import train_test_split
|
89 |
+
|
90 |
+
# Load your data
|
91 |
+
df = pd.read_csv('/content/data/train.csv')
|
92 |
+
train_df, test_df = train_test_split(df, test_size=0.001, random_state=42)
|
93 |
+
train_df, val_df = train_test_split(train_df, test_size=0.001, random_state=42)
|
94 |
+
|
95 |
+
# Create datasets
|
96 |
+
train_dataset = Dataset.from_pandas(train_df)
|
97 |
+
val_dataset = Dataset.from_pandas(val_df)
|
98 |
+
test_dataset = Dataset.from_pandas(test_df)
|
99 |
+
|
100 |
+
# Combine datasets into a DatasetDict
|
101 |
+
dataset_dict = DatasetDict({
|
102 |
+
'train': train_dataset,
|
103 |
+
'validation': val_dataset,
|
104 |
+
'test': test_dataset
|
105 |
+
})
|
106 |
+
|
107 |
+
# Apply the formatting function to the datasets
|
108 |
+
dataset_dict = dataset_dict.map(formatting_prompts_func, batched=True)
|
109 |
+
|
110 |
+
from trl import SFTTrainer
|
111 |
+
from transformers import TrainingArguments
|
112 |
+
from unsloth import is_bfloat16_supported
|
113 |
+
|
114 |
+
dataset=dataset_dict
|
115 |
+
trainer = SFTTrainer(
|
116 |
+
model = model,
|
117 |
+
tokenizer = tokenizer,
|
118 |
+
train_dataset = dataset['train'],
|
119 |
+
dataset_text_field = "text",
|
120 |
+
max_seq_length = max_seq_length,
|
121 |
+
dataset_num_proc = 2,
|
122 |
+
packing = False, # Can make training 5x faster for short sequences.
|
123 |
+
args = TrainingArguments(
|
124 |
+
per_device_train_batch_size = 4,
|
125 |
+
gradient_accumulation_steps = 32,
|
126 |
+
warmup_steps = 5,
|
127 |
+
# num_train_epochs = 1, # Set this for 1 full training run.
|
128 |
+
max_steps = 160,
|
129 |
+
learning_rate = 2e-4,
|
130 |
+
fp16 = not is_bfloat16_supported(),
|
131 |
+
bf16 = is_bfloat16_supported(),
|
132 |
+
logging_steps = 1,
|
133 |
+
optim = "adamw_8bit",
|
134 |
+
weight_decay = 0.01,
|
135 |
+
lr_scheduler_type = "linear",
|
136 |
+
seed = 3407,
|
137 |
+
output_dir = "outputs",
|
138 |
+
),
|
139 |
+
)
|
140 |
+
|
141 |
+
#@title Show current memory stats
|
142 |
+
gpu_stats = torch.cuda.get_device_properties(0)
|
143 |
+
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
|
144 |
+
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
|
145 |
+
print(f"GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
|
146 |
+
print(f"{start_gpu_memory} GB of memory reserved.")
|
147 |
+
|
148 |
+
trainer_stats = trainer.train()
|
149 |
+
|
150 |
+
#@title Show final memory and time stats
|
151 |
+
used_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
|
152 |
+
used_memory_for_lora = round(used_memory - start_gpu_memory, 3)
|
153 |
+
used_percentage = round(used_memory /max_memory*100, 3)
|
154 |
+
lora_percentage = round(used_memory_for_lora/max_memory*100, 3)
|
155 |
+
print(f"{trainer_stats.metrics['train_runtime']} seconds used for training.")
|
156 |
+
print(f"{round(trainer_stats.metrics['train_runtime']/60, 2)} minutes used for training.")
|
157 |
+
print(f"Peak reserved memory = {used_memory} GB.")
|
158 |
+
print(f"Peak reserved memory for training = {used_memory_for_lora} GB.")
|
159 |
+
print(f"Peak reserved memory % of max memory = {used_percentage} %.")
|
160 |
+
print(f"Peak reserved memory for training % of max memory = {lora_percentage} %.")
|
161 |
+
|
162 |
+
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
163 |
+
|
164 |
+
### Input:
|
165 |
+
{}
|
166 |
+
|
167 |
+
### Response:
|
168 |
+
{}"""
|
169 |
+
|
170 |
+
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
|
171 |
+
inputs = tokenizer(
|
172 |
+
[
|
173 |
+
alpaca_prompt.format(
|
174 |
+
"What is alternate for Rifagut 400 mg?", # input
|
175 |
+
"", # output - leave this blank for generation!
|
176 |
+
)
|
177 |
+
], return_tensors = "pt").to("cuda")
|
178 |
+
|
179 |
+
outputs = model.generate(**inputs, max_new_tokens=64, use_cache = True)
|
180 |
+
tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
181 |
+
|
182 |
+
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
183 |
+
|
184 |
+
### Input:
|
185 |
+
{}
|
186 |
+
|
187 |
+
### Response:
|
188 |
+
{}"""
|
189 |
+
|
190 |
+
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
|
191 |
+
inputs = tokenizer(
|
192 |
+
[
|
193 |
+
alpaca_prompt.format(
|
194 |
+
"what is alternate of Ocurax 400mg tablets?", # input
|
195 |
+
"", # output - leave this blank for generation!
|
196 |
+
)
|
197 |
+
], return_tensors = "pt").to("cuda")
|
198 |
+
|
199 |
+
from transformers import TextStreamer
|
200 |
+
text_streamer = TextStreamer(tokenizer)
|
201 |
+
_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 200)
|
202 |
+
|
203 |
+
# | f16 | q4_k_m | q5_k_m | q8_0 |
|
204 |
+
|
205 |
+
# Save to 8-bit quantization (f16) GGUF
|
206 |
+
model.save_pretrained_gguf("model-16bit", tokenizer, quantization_method="f16")
|
207 |
+
|
208 |
+
# Push to Hugging Face hub with 8-bit quantization (f16)
|
209 |
+
model.push_to_hub_gguf("student-abdullah/Llama3.1_medicine_fine-tuned_24-09_16bit_gguf", tokenizer, quantization_method="f16", token="hf_...")
|