--- base_model: meta-llama/Llama-3.2-1B datasets: - student-abdullah/Experimental language: - en license: apache-2.0 tags: - text-generation-inference - transformers - torch - trl - unsloth - llama - gguf --- # Uploaded model - **Developed by:** student-abdullah - **License:** apache-2.0 - **Finetuned from model:** meta-llama/Llama-3.2-1B - **Created on:** 3st October, 2024 --- # Acknowledgement --- # Model Description This model is fine-tuned from the meta-llama/Llama-3.2-1B base model to enhance its capabilities in generating relevant and accurate responses related to generic medications under the PMBJP scheme. The fine-tuning process included the following hyperparameters: - Fine Tuning Template: Llama Q&A - Max Tokens: 512 - LoRA Alpha: 6 - LoRA Rank (r): 128 - Learning rate: 5e-5 - Gradient Accumulation Steps: 2 - Batch Size: 4 - Quantization: 16 bits --- # Model Quantitative Performace - Training Quantitative Loss: 0.1407 (at final 5th epoch 5150th Step) --- # Limitations - Token Limitations: With a max token limit of 512, the model might not handle very long queries or contexts effectively. - Training Data Limitations: The model’s performance is contingent on the quality and coverage of the fine-tuning dataset, which may affect its generalizability to different contexts or medications not covered in the dataset. - Potential Biases: As with any model fine-tuned on specific data, there may be biases based on the dataset used for training. --- # Model Performace Evaluation: - Evaluation on 1000 Questions based on dataset (to evaluate the finetuned knowledge base) - At temperature 0.3 - Correct Responses: 76% - Incorrect Responses: 24%