nazneen commited on
Commit
91d3c9c
1 Parent(s): 2508abe

model documentation

Browse files
Files changed (1) hide show
  1. README.md +187 -0
README.md ADDED
@@ -0,0 +1,187 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+
3
+ license: apache-2.0
4
+
5
+ ---
6
+ # Model Card for luke-large-finetuned-conll-2003
7
+
8
+
9
+
10
+ # Model Details
11
+
12
+ ## Model Description
13
+
14
+ LUKE (Language Understanding with Knowledge-based Embeddings) is a new pretrained contextualized representation of words and entities based on transformer.
15
+
16
+ - **Developed by:** Studio Ousi
17
+ - **Shared by [Optional]:** More information needed
18
+ - **Model type:** EntitySpanClassification
19
+ - **Language(s) (NLP):** More information needed
20
+ - **License:** Apache-2.0
21
+ - **Related Models:** [Luke-large](https://huggingface.co/studio-ousia/luke-large?text=Paris+is+the+%3Cmask%3E+of+France.)
22
+ - **Parent Model:** Luke
23
+ - **Resources for more information:**
24
+ - [GitHub Repo](https://github.com/studio-ousia/luke)
25
+ - [Associated Paper](https://arxiv.org/abs/2010.01057)
26
+
27
+ # Uses
28
+
29
+
30
+ ## Direct Use
31
+
32
+ More information needed
33
+
34
+ ## Downstream Use [Optional]
35
+
36
+ This model can also be used for the task of named entity recognition, cloze-style question answering, fine-grained entity typing, extractive question answering.
37
+
38
+ ## Out-of-Scope Use
39
+
40
+ The model should not be used to intentionally create hostile or alienating environments for people.
41
+
42
+ # Bias, Risks, and Limitations
43
+
44
+ Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
45
+
46
+
47
+ ## Recommendations
48
+
49
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
50
+
51
+
52
+ # Training Details
53
+
54
+ ## Training Data
55
+
56
+ More information needed
57
+
58
+ ## Training Procedure
59
+
60
+
61
+ ### Preprocessing
62
+
63
+ More information needed
64
+
65
+ ### Speeds, Sizes, Times
66
+
67
+ More information needed
68
+
69
+ # Evaluation
70
+
71
+
72
+ ## Testing Data, Factors & Metrics
73
+
74
+ ### Testing Data
75
+
76
+ More information needed
77
+
78
+ ### Factors
79
+
80
+
81
+ ### Metrics
82
+
83
+ LUKE achieves state-of-the-art results on five popular NLP benchmarks including
84
+ * **[SQuAD v1.1](https://rajpurkar.github.io/SQuAD-explorer/)** (extractive
85
+ question answering),
86
+ * **[CoNLL-2003](https://www.clips.uantwerpen.be/conll2003/ner/)** (named entity
87
+ recognition), **[ReCoRD](https://sheng-z.github.io/ReCoRD-explorer/)**
88
+ (cloze-style question answering),
89
+ * **[TACRED](https://nlp.stanford.edu/projects/tacred/)** (relation
90
+ classification), and
91
+ * **[Open Entity](https://www.cs.utexas.edu/~eunsol/html_pages/open_entity.html)** (entity typing).
92
+
93
+ ## Results
94
+
95
+ The experimental results are provided as follows:
96
+
97
+ | Task | Dataset | Metric | LUKE-large | luke-base | Previous SOTA |
98
+ | ------------------------------ | ---------------------------------------------------------------------------- | ------ | ----------------- | --------- | ------------------------------------------------------------------------- |
99
+ | Extractive Question Answering | [SQuAD v1.1](https://rajpurkar.github.io/SQuAD-explorer/) | EM/F1 | **90.2**/**95.4** | 86.1/92.3 | 89.9/95.1 ([Yang et al., 2019](https://arxiv.org/abs/1906.08237)) |
100
+ | Named Entity Recognition | [CoNLL-2003](https://www.clips.uantwerpen.be/conll2003/ner/) | F1 | **94.3** | 93.3 | 93.5 ([Baevski et al., 2019](https://arxiv.org/abs/1903.07785)) |
101
+ | Cloze-style Question Answering | [ReCoRD](https://sheng-z.github.io/ReCoRD-explorer/) | EM/F1 | **90.6**/**91.2** | - | 83.1/83.7 ([Li et al., 2019](https://www.aclweb.org/anthology/D19-6011/)) |
102
+ | Relation Classification | [TACRED](https://nlp.stanford.edu/projects/tacred/) | F1 | **72.7** | - | 72.0 ([Wang et al. , 2020](https://arxiv.org/abs/2002.01808)) |
103
+ | Fine-grained Entity Typing | [Open Entity](https://www.cs.utexas.edu/~eunsol/html_pages/open_entity.html) | F1 | **78.2** | - | 77.6 ([Wang et al. , 2020](https://arxiv.org/abs/2002.01808)) |
104
+
105
+
106
+ Please check the [Github repository](https://github.com/studio-ousia/luke) for more details and updates.
107
+
108
+
109
+
110
+ # Model Examination
111
+
112
+ More information needed
113
+
114
+ # Environmental Impact
115
+
116
+
117
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
118
+
119
+ - **Hardware Type:** More information needed
120
+ - **Hours used:** More information needed
121
+ - **Cloud Provider:** More information needed
122
+ - **Compute Region:** More information needed
123
+ - **Carbon Emitted:** More information needed
124
+
125
+ # Technical Specifications [optional]
126
+
127
+ ## Model Architecture and Objective
128
+
129
+ More information needed
130
+
131
+ ## Compute Infrastructure
132
+
133
+ More information needed
134
+
135
+ ### Hardware
136
+
137
+ * transformers_version: 4.6.0.dev0
138
+
139
+ ### Software
140
+ More information needed
141
+
142
+ # Citation
143
+
144
+
145
+ **BibTeX:**
146
+ ```
147
+ @inproceedings{yamada2020luke,
148
+ title={LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention},
149
+ author={Ikuya Yamada and Akari Asai and Hiroyuki Shindo and Hideaki Takeda and Yuji Matsumoto},
150
+ booktitle={EMNLP},
151
+ year={2020}
152
+ }
153
+ ```
154
+
155
+
156
+ # Glossary [optional]
157
+ More information needed
158
+
159
+ # More Information [optional]
160
+
161
+ More information needed
162
+
163
+ # Model Card Authors [optional]
164
+
165
+
166
+ Studio Ousi in collaboration with Ezi Ozoani and the Hugging Face team
167
+
168
+ # Model Card Contact
169
+
170
+ More information needed
171
+
172
+ # How to Get Started with the Model
173
+
174
+ Use the code below to get started with the model.
175
+
176
+ <details>
177
+ <summary> Click to expand </summary>
178
+
179
+ ```python
180
+ from transformers import AutoTokenizer, LukeForEntitySpanClassification
181
+
182
+ tokenizer = AutoTokenizer.from_pretrained("studio-ousia/luke-large-finetuned-conll-2003")
183
+
184
+ model = LukeForEntitySpanClassification.from_pretrained("studio-ousia/luke-large-finetuned-conll-2003")
185
+ ```
186
+ </details>
187
+