--- library_name: transformers tags: - unsloth license: apache-2.0 datasets: - lighteval/MATH-Hard language: - en base_model: - meta-llama/Llama-3.2-3B-Instruct metrics: - accuracy --- ![Komodo-Logo](Komodo-Logo.jpg) This version of Komodo is a Llama-3.2-3B-Instruct finetuned model on lighteval/MATH-Hard dataset to increase math performance of the base model. This model is 4bit-quantized. You should import it 8bit if you want to use 3B parameters! Make sure you installed 'bitsandbytes' library before import. Example Usage: ```py tokenizer = AutoTokenizer.from_pretrained("suayptalha/Komodo-Llama-3.2-8B") model = AutoModelForCausalLM.from_pretrained("suayptalha/Komodo-Llama-3.2-8B") example_prompt = """Below is a math question and its solution: Question: {} Solution: {}""" inputs = tokenizer( [ example_prompt.format( "", #Question here "", #Solution here (for training) ) ], return_tensors = "pt").to("cuda") outputs = model.generate(**inputs, max_new_tokens = 50, use_cache = True) tokenizer.batch_decode(outputs) ```