update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
model-index:
|
8 |
+
- name: exper3_mesum5
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# exper3_mesum5
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.6397
|
20 |
+
- Accuracy: 0.8385
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 0.0002
|
40 |
+
- train_batch_size: 16
|
41 |
+
- eval_batch_size: 8
|
42 |
+
- seed: 42
|
43 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
+
- lr_scheduler_type: linear
|
45 |
+
- num_epochs: 8
|
46 |
+
- mixed_precision_training: Native AMP
|
47 |
+
|
48 |
+
### Training results
|
49 |
+
|
50 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
51 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
52 |
+
| 3.895 | 0.23 | 100 | 3.8276 | 0.1935 |
|
53 |
+
| 3.1174 | 0.47 | 200 | 3.1217 | 0.3107 |
|
54 |
+
| 2.6 | 0.7 | 300 | 2.5399 | 0.4207 |
|
55 |
+
| 2.256 | 0.93 | 400 | 2.1767 | 0.5160 |
|
56 |
+
| 1.5441 | 1.16 | 500 | 1.8086 | 0.5852 |
|
57 |
+
| 1.3834 | 1.4 | 600 | 1.5565 | 0.6325 |
|
58 |
+
| 1.1995 | 1.63 | 700 | 1.3339 | 0.6763 |
|
59 |
+
| 1.0845 | 1.86 | 800 | 1.3299 | 0.6533 |
|
60 |
+
| 0.6472 | 2.09 | 900 | 1.0679 | 0.7219 |
|
61 |
+
| 0.5948 | 2.33 | 1000 | 1.0286 | 0.7124 |
|
62 |
+
| 0.5565 | 2.56 | 1100 | 0.9595 | 0.7284 |
|
63 |
+
| 0.4879 | 2.79 | 1200 | 0.8915 | 0.7420 |
|
64 |
+
| 0.2816 | 3.02 | 1300 | 0.8159 | 0.7763 |
|
65 |
+
| 0.2412 | 3.26 | 1400 | 0.7766 | 0.7911 |
|
66 |
+
| 0.2015 | 3.49 | 1500 | 0.7850 | 0.7828 |
|
67 |
+
| 0.274 | 3.72 | 1600 | 0.7361 | 0.7935 |
|
68 |
+
| 0.1244 | 3.95 | 1700 | 0.7299 | 0.7911 |
|
69 |
+
| 0.0794 | 4.19 | 1800 | 0.7441 | 0.7846 |
|
70 |
+
| 0.0915 | 4.42 | 1900 | 0.7614 | 0.7941 |
|
71 |
+
| 0.0817 | 4.65 | 2000 | 0.7310 | 0.8012 |
|
72 |
+
| 0.0561 | 4.88 | 2100 | 0.7222 | 0.8065 |
|
73 |
+
| 0.0165 | 5.12 | 2200 | 0.7515 | 0.8059 |
|
74 |
+
| 0.0168 | 5.35 | 2300 | 0.6687 | 0.8213 |
|
75 |
+
| 0.0212 | 5.58 | 2400 | 0.6671 | 0.8249 |
|
76 |
+
| 0.0389 | 5.81 | 2500 | 0.6893 | 0.8278 |
|
77 |
+
| 0.0087 | 6.05 | 2600 | 0.6839 | 0.8260 |
|
78 |
+
| 0.0087 | 6.28 | 2700 | 0.6412 | 0.8320 |
|
79 |
+
| 0.0077 | 6.51 | 2800 | 0.6366 | 0.8367 |
|
80 |
+
| 0.0065 | 6.74 | 2900 | 0.6697 | 0.8272 |
|
81 |
+
| 0.0061 | 6.98 | 3000 | 0.6510 | 0.8349 |
|
82 |
+
| 0.0185 | 7.21 | 3100 | 0.6452 | 0.8367 |
|
83 |
+
| 0.0059 | 7.44 | 3200 | 0.6426 | 0.8379 |
|
84 |
+
| 0.0062 | 7.67 | 3300 | 0.6398 | 0.8379 |
|
85 |
+
| 0.0315 | 7.91 | 3400 | 0.6397 | 0.8385 |
|
86 |
+
|
87 |
+
|
88 |
+
### Framework versions
|
89 |
+
|
90 |
+
- Transformers 4.20.1
|
91 |
+
- Pytorch 1.12.0+cu113
|
92 |
+
- Datasets 2.3.2
|
93 |
+
- Tokenizers 0.12.1
|