--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: exper4_mesum5 results: [] --- # exper4_mesum5 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.4389 - Accuracy: 0.1331 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.3793 | 0.23 | 100 | 3.4527 | 0.1308 | | 3.2492 | 0.47 | 200 | 3.4501 | 0.1331 | | 3.3847 | 0.7 | 300 | 3.4500 | 0.1272 | | 3.3739 | 0.93 | 400 | 3.4504 | 0.1320 | | 3.4181 | 1.16 | 500 | 3.4452 | 0.1320 | | 3.214 | 1.4 | 600 | 3.4503 | 0.1320 | | 3.282 | 1.63 | 700 | 3.4444 | 0.1325 | | 3.5308 | 1.86 | 800 | 3.4473 | 0.1337 | | 3.2251 | 2.09 | 900 | 3.4415 | 0.1361 | | 3.4385 | 2.33 | 1000 | 3.4408 | 0.1343 | | 3.3702 | 2.56 | 1100 | 3.4406 | 0.1325 | | 3.366 | 2.79 | 1200 | 3.4411 | 0.1355 | | 3.2022 | 3.02 | 1300 | 3.4403 | 0.1308 | | 3.2768 | 3.26 | 1400 | 3.4394 | 0.1320 | | 3.3444 | 3.49 | 1500 | 3.4394 | 0.1314 | | 3.2981 | 3.72 | 1600 | 3.4391 | 0.1331 | | 3.3349 | 3.95 | 1700 | 3.4389 | 0.1331 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1