suehyunpark commited on
Commit
2ff2d61
1 Parent(s): 41813ad

Model save

Browse files
README.md ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: barc0/Llama-3.1-ARC-Potpourri-Induction-8B
3
+ library_name: transformers
4
+ model_name: potpourri-8b-inst-fft-induction-bc-trajectory-max1-per-task
5
+ tags:
6
+ - generated_from_trainer
7
+ - trl
8
+ - sft
9
+ licence: license
10
+ ---
11
+
12
+ # Model Card for potpourri-8b-inst-fft-induction-bc-trajectory-max1-per-task
13
+
14
+ This model is a fine-tuned version of [barc0/Llama-3.1-ARC-Potpourri-Induction-8B](https://huggingface.co/barc0/Llama-3.1-ARC-Potpourri-Induction-8B).
15
+ It has been trained using [TRL](https://github.com/huggingface/trl).
16
+
17
+ ## Quick start
18
+
19
+ ```python
20
+ from transformers import pipeline
21
+
22
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
23
+ generator = pipeline("text-generation", model="suehyunpark/potpourri-8b-inst-fft-induction-bc-trajectory-max1-per-task", device="cuda")
24
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
25
+ print(output["generated_text"])
26
+ ```
27
+
28
+ ## Training procedure
29
+
30
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/suehyun/arc-improve/runs/38sygte8)
31
+
32
+ This model was trained with SFT.
33
+
34
+ ### Framework versions
35
+
36
+ - TRL: 0.12.1
37
+ - Transformers: 4.46.2
38
+ - Pytorch: 2.5.1
39
+ - Datasets: 3.1.0
40
+ - Tokenizers: 0.20.3
41
+
42
+ ## Citations
43
+
44
+
45
+
46
+ Cite TRL as:
47
+
48
+ ```bibtex
49
+ @misc{vonwerra2022trl,
50
+ title = {{TRL: Transformer Reinforcement Learning}},
51
+ author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
52
+ year = 2020,
53
+ journal = {GitHub repository},
54
+ publisher = {GitHub},
55
+ howpublished = {\url{https://github.com/huggingface/trl}}
56
+ }
57
+ ```
all_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.0,
3
+ "total_flos": 1256277934080.0,
4
+ "train_loss": 0.8235548933347067,
5
+ "train_runtime": 340.6476,
6
+ "train_samples": 169,
7
+ "train_samples_per_second": 0.208,
8
+ "train_steps_per_second": 0.009
9
+ }
generation_config.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 128000,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 128001,
6
+ 128008,
7
+ 128009
8
+ ],
9
+ "temperature": 0.6,
10
+ "top_p": 0.9,
11
+ "transformers_version": "4.46.2"
12
+ }
train_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.0,
3
+ "total_flos": 1256277934080.0,
4
+ "train_loss": 0.8235548933347067,
5
+ "train_runtime": 340.6476,
6
+ "train_samples": 169,
7
+ "train_samples_per_second": 0.208,
8
+ "train_steps_per_second": 0.009
9
+ }
trainer_state.json ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 500,
6
+ "global_step": 3,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.3333333333333333,
13
+ "grad_norm": 104.34296088799998,
14
+ "learning_rate": 1e-05,
15
+ "loss": 1.0512,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.6666666666666666,
20
+ "grad_norm": 98.47481125967262,
21
+ "learning_rate": 5e-06,
22
+ "loss": 1.0267,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 1.0,
27
+ "grad_norm": 7.664500232897243,
28
+ "learning_rate": 0.0,
29
+ "loss": 0.3927,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 1.0,
34
+ "eval_loss": 0.4052319824695587,
35
+ "eval_runtime": 1.4338,
36
+ "eval_samples_per_second": 2.092,
37
+ "eval_steps_per_second": 0.697,
38
+ "step": 3
39
+ },
40
+ {
41
+ "epoch": 1.0,
42
+ "step": 3,
43
+ "total_flos": 1256277934080.0,
44
+ "train_loss": 0.8235548933347067,
45
+ "train_runtime": 340.6476,
46
+ "train_samples_per_second": 0.208,
47
+ "train_steps_per_second": 0.009
48
+ }
49
+ ],
50
+ "logging_steps": 1,
51
+ "max_steps": 3,
52
+ "num_input_tokens_seen": 0,
53
+ "num_train_epochs": 1,
54
+ "save_steps": 500,
55
+ "stateful_callbacks": {
56
+ "TrainerControl": {
57
+ "args": {
58
+ "should_epoch_stop": false,
59
+ "should_evaluate": false,
60
+ "should_log": false,
61
+ "should_save": true,
62
+ "should_training_stop": true
63
+ },
64
+ "attributes": {}
65
+ }
66
+ },
67
+ "total_flos": 1256277934080.0,
68
+ "train_batch_size": 8,
69
+ "trial_name": null,
70
+ "trial_params": null
71
+ }