File size: 6,704 Bytes
08855d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
---
license: apache-2.0
base_model: Falconsai/text_summarization
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: text_summarization-finetuned-stocknews
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# text_summarization-finetuned-stocknews

This model is a fine-tuned version of [Falconsai/text_summarization](https://huggingface.co/Falconsai/text_summarization) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5087
- Rouge1: 28.1323
- Rouge2: 14.1505
- Rougel: 23.7163
- Rougelsum: 24.743
- Gen Len: 19.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| No log        | 1.0   | 25   | 1.8901          | 26.1517 | 11.6615 | 21.4583 | 22.9556   | 19.0    |
| No log        | 2.0   | 50   | 1.7909          | 25.9481 | 11.4621 | 21.1748 | 22.8127   | 19.0    |
| No log        | 3.0   | 75   | 1.7388          | 26.412  | 12.1797 | 21.744  | 23.3289   | 19.0    |
| No log        | 4.0   | 100  | 1.6988          | 26.4465 | 12.2417 | 21.7109 | 23.2402   | 19.0    |
| No log        | 5.0   | 125  | 1.6752          | 26.6441 | 12.4313 | 21.7396 | 23.2725   | 19.0    |
| No log        | 6.0   | 150  | 1.6531          | 26.4585 | 12.2979 | 21.7528 | 23.1338   | 19.0    |
| No log        | 7.0   | 175  | 1.6386          | 26.6186 | 12.4271 | 21.8074 | 23.2756   | 19.0    |
| No log        | 8.0   | 200  | 1.6263          | 26.4223 | 12.3512 | 21.7575 | 23.3278   | 19.0    |
| No log        | 9.0   | 225  | 1.6124          | 26.5846 | 12.49   | 21.9218 | 23.433    | 19.0    |
| No log        | 10.0  | 250  | 1.6035          | 26.8364 | 12.6954 | 22.2409 | 23.6239   | 19.0    |
| No log        | 11.0  | 275  | 1.5926          | 27.0986 | 12.7881 | 22.2246 | 23.6203   | 19.0    |
| No log        | 12.0  | 300  | 1.5844          | 27.4875 | 13.1342 | 22.717  | 24.0836   | 19.0    |
| No log        | 13.0  | 325  | 1.5757          | 27.6863 | 13.2919 | 22.8203 | 24.1659   | 19.0    |
| No log        | 14.0  | 350  | 1.5688          | 27.69   | 13.295  | 22.8364 | 24.2587   | 19.0    |
| No log        | 15.0  | 375  | 1.5643          | 27.7651 | 13.5588 | 23.01   | 24.5047   | 19.0    |
| No log        | 16.0  | 400  | 1.5586          | 27.8662 | 13.8812 | 23.1299 | 24.5692   | 19.0    |
| No log        | 17.0  | 425  | 1.5525          | 27.5329 | 13.5729 | 22.8646 | 24.2491   | 19.0    |
| No log        | 18.0  | 450  | 1.5466          | 27.2864 | 13.6465 | 22.754  | 24.0451   | 19.0    |
| No log        | 19.0  | 475  | 1.5434          | 27.3062 | 13.664  | 22.7509 | 24.015    | 19.0    |
| 1.7497        | 20.0  | 500  | 1.5401          | 27.3177 | 13.8162 | 22.8012 | 24.0359   | 19.0    |
| 1.7497        | 21.0  | 525  | 1.5369          | 27.4956 | 13.9869 | 23.0248 | 24.2922   | 19.0    |
| 1.7497        | 22.0  | 550  | 1.5345          | 27.4794 | 13.7914 | 23.0306 | 24.2942   | 19.0    |
| 1.7497        | 23.0  | 575  | 1.5324          | 27.4794 | 13.7914 | 23.0306 | 24.2942   | 19.0    |
| 1.7497        | 24.0  | 600  | 1.5302          | 27.529  | 13.8756 | 23.1045 | 24.3861   | 19.0    |
| 1.7497        | 25.0  | 625  | 1.5266          | 27.8738 | 14.0877 | 23.4826 | 24.7471   | 19.0    |
| 1.7497        | 26.0  | 650  | 1.5252          | 27.9294 | 13.9793 | 23.4775 | 24.669    | 19.0    |
| 1.7497        | 27.0  | 675  | 1.5247          | 28.0046 | 14.0835 | 23.4865 | 24.7035   | 19.0    |
| 1.7497        | 28.0  | 700  | 1.5239          | 28.0085 | 14.1428 | 23.6155 | 24.8178   | 19.0    |
| 1.7497        | 29.0  | 725  | 1.5224          | 27.9738 | 14.1251 | 23.6146 | 24.7919   | 19.0    |
| 1.7497        | 30.0  | 750  | 1.5200          | 28.007  | 14.1042 | 23.653  | 24.7639   | 19.0    |
| 1.7497        | 31.0  | 775  | 1.5192          | 27.9376 | 14.0443 | 23.5673 | 24.6209   | 19.0    |
| 1.7497        | 32.0  | 800  | 1.5177          | 28.0251 | 14.0888 | 23.6316 | 24.6779   | 19.0    |
| 1.7497        | 33.0  | 825  | 1.5165          | 28.0519 | 14.0867 | 23.6242 | 24.6728   | 19.0    |
| 1.7497        | 34.0  | 850  | 1.5164          | 28.1185 | 14.1615 | 23.6657 | 24.7177   | 19.0    |
| 1.7497        | 35.0  | 875  | 1.5146          | 28.0809 | 14.1228 | 23.6657 | 24.7177   | 19.0    |
| 1.7497        | 36.0  | 900  | 1.5134          | 28.1107 | 14.1889 | 23.6946 | 24.7532   | 19.0    |
| 1.7497        | 37.0  | 925  | 1.5130          | 28.0476 | 14.0937 | 23.6232 | 24.6671   | 19.0    |
| 1.7497        | 38.0  | 950  | 1.5123          | 27.9979 | 14.0209 | 23.5935 | 24.6298   | 19.0    |
| 1.7497        | 39.0  | 975  | 1.5114          | 28.001  | 14.1042 | 23.6265 | 24.6735   | 19.0    |
| 1.5033        | 40.0  | 1000 | 1.5100          | 28.004  | 14.1355 | 23.6552 | 24.6776   | 19.0    |
| 1.5033        | 41.0  | 1025 | 1.5100          | 28.0346 | 14.1432 | 23.6432 | 24.7052   | 19.0    |
| 1.5033        | 42.0  | 1050 | 1.5098          | 28.052  | 14.1387 | 23.6401 | 24.6953   | 19.0    |
| 1.5033        | 43.0  | 1075 | 1.5098          | 28.1032 | 14.1743 | 23.6401 | 24.6953   | 19.0    |
| 1.5033        | 44.0  | 1100 | 1.5096          | 28.129  | 14.1847 | 23.7406 | 24.805    | 19.0    |
| 1.5033        | 45.0  | 1125 | 1.5093          | 28.1763 | 14.2264 | 23.7075 | 24.783    | 19.0    |
| 1.5033        | 46.0  | 1150 | 1.5090          | 28.1336 | 14.1871 | 23.7075 | 24.783    | 19.0    |
| 1.5033        | 47.0  | 1175 | 1.5089          | 28.1336 | 14.1871 | 23.7075 | 24.783    | 19.0    |
| 1.5033        | 48.0  | 1200 | 1.5088          | 28.1336 | 14.1871 | 23.7075 | 24.783    | 19.0    |
| 1.5033        | 49.0  | 1225 | 1.5087          | 28.129  | 14.1847 | 23.7406 | 24.805    | 19.0    |
| 1.5033        | 50.0  | 1250 | 1.5087          | 28.1323 | 14.1505 | 23.7163 | 24.743    | 19.0    |


### Framework versions

- Transformers 4.38.1
- Pytorch 2.1.2
- Datasets 2.1.0
- Tokenizers 0.15.2