--- base_model: microsoft/Phi-3-mini-4k-instruct library_name: peft license: mit tags: - trl - sft - generated_from_trainer model-index: - name: phi-3-mini-QLoRA results: [] --- # phi-3-mini-QLoRA This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6126 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 0 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 250 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-------:|:----:|:---------------:| | 1.3693 | 0.6667 | 5 | 1.3378 | | 1.1643 | 1.3333 | 10 | 1.1047 | | 0.8388 | 2.0 | 15 | 0.8767 | | 0.6894 | 2.6667 | 20 | 0.6828 | | 0.5636 | 3.3333 | 25 | 0.5688 | | 0.4496 | 4.0 | 30 | 0.5110 | | 0.3487 | 4.6667 | 35 | 0.4549 | | 0.3169 | 5.3333 | 40 | 0.4148 | | 0.2595 | 6.0 | 45 | 0.3893 | | 0.2002 | 6.6667 | 50 | 0.3733 | | 0.2437 | 7.3333 | 55 | 0.3597 | | 0.1669 | 8.0 | 60 | 0.3456 | | 0.1873 | 8.6667 | 65 | 0.3491 | | 0.1831 | 9.3333 | 70 | 0.3422 | | 0.1581 | 10.0 | 75 | 0.3664 | | 0.0831 | 10.6667 | 80 | 0.3644 | | 0.1277 | 11.3333 | 85 | 0.3822 | | 0.0539 | 12.0 | 90 | 0.3868 | | 0.0799 | 12.6667 | 95 | 0.4190 | | 0.066 | 13.3333 | 100 | 0.4375 | | 0.0564 | 14.0 | 105 | 0.4581 | | 0.0356 | 14.6667 | 110 | 0.4715 | | 0.0493 | 15.3333 | 115 | 0.4896 | | 0.0399 | 16.0 | 120 | 0.5066 | | 0.0452 | 16.6667 | 125 | 0.5022 | | 0.0305 | 17.3333 | 130 | 0.5246 | | 0.036 | 18.0 | 135 | 0.5492 | | 0.0282 | 18.6667 | 140 | 0.5537 | | 0.0327 | 19.3333 | 145 | 0.5703 | | 0.0341 | 20.0 | 150 | 0.5699 | | 0.0315 | 20.6667 | 155 | 0.5761 | | 0.0284 | 21.3333 | 160 | 0.5781 | | 0.027 | 22.0 | 165 | 0.5818 | | 0.0258 | 22.6667 | 170 | 0.5858 | | 0.0224 | 23.3333 | 175 | 0.5884 | | 0.0253 | 24.0 | 180 | 0.5960 | | 0.0232 | 24.6667 | 185 | 0.6015 | | 0.0256 | 25.3333 | 190 | 0.6088 | | 0.0226 | 26.0 | 195 | 0.6106 | | 0.0226 | 26.6667 | 200 | 0.6096 | | 0.0259 | 27.3333 | 205 | 0.6102 | | 0.0217 | 28.0 | 210 | 0.6100 | | 0.022 | 28.6667 | 215 | 0.6115 | | 0.0219 | 29.3333 | 220 | 0.6115 | | 0.0239 | 30.0 | 225 | 0.6109 | | 0.0226 | 30.6667 | 230 | 0.6123 | | 0.0219 | 31.3333 | 235 | 0.6140 | | 0.0201 | 32.0 | 240 | 0.6128 | | 0.0198 | 32.6667 | 245 | 0.6130 | | 0.0234 | 33.3333 | 250 | 0.6126 | ### Framework versions - PEFT 0.13.2 - Transformers 4.45.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.0