suka-nlp commited on
Commit
be9dedc
1 Parent(s): 49253ce

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +76 -0
README.md ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - mlabonne/Evol-Instruct-Python-26k
4
+ language:
5
+ - en
6
+ library_name: adapter-transformers
7
+ tags:
8
+ - code
9
+ ---
10
+
11
+ ## Model Details
12
+
13
+ ### Model Description
14
+
15
+ - **Developed by:** Luthfantry Zamzam Muhammad
16
+ - **Model type:** large language model for code generation
17
+ - **Language(s) (NLP):** English
18
+ - **License:** [More Information Needed]
19
+ - **Finetuned from model:** llama2
20
+
21
+ ### Model Sources
22
+
23
+ - **Repository:** https://github.com/unslothai/unsloth
24
+ - **Developed by:** unsloth
25
+
26
+ ### Model parameter
27
+
28
+ - r = 16,
29
+ - target_modules = ["q_proj", "k_proj", "v_proj", "o_proj","gate_proj", "up_proj", "down_proj",],
30
+ - lora_alpha = 16,
31
+ - lora_dropout = 0,
32
+ - bias = "none",
33
+ - use_gradient_checkpointing = "unsloth",
34
+ - random_state = 3407,
35
+ - use_rslora = False,
36
+ - loftq_config = None,
37
+
38
+ ## Usage and limitations
39
+
40
+ This model is used to generate code based on commands given by the user. it should be noted that this model can generate many languages because it takes the initial model from llama2. However, after finetuning it is better at generating python code, because currently it is only trained with python code datasets.
41
+
42
+ ## How to Get Started with the Model
43
+
44
+ use link below to use model
45
+ https://colab.research.google.com/drive/1lBzz5KeZJKXjvivbYvmGarix9Ao6Wxe5?usp=sharing
46
+
47
+ ### Training Data
48
+
49
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
50
+
51
+ https://huggingface.co/datasets/mlabonne/Evol-Instruct-Python-26k
52
+
53
+
54
+ #### Training Hyperparameters
55
+
56
+ - **Warmup_step:** 5
57
+ - **lr_scheduler_type:** linear
58
+ - **Learning Rate:** 0.0002
59
+ - **Batch Size:** 2
60
+ - **Weigh_decay:** 0.001
61
+ - **Epoch:** 60
62
+ - **Optimizer:** adamw_8bit
63
+
64
+ #### Testing Data
65
+
66
+ https://huggingface.co/datasets/google-research-datasets/mbpp/viewer/full
67
+
68
+ ### Results
69
+
70
+ Berfore finetune
71
+ - Accurary : 1,8%
72
+ - Consistensy : 0%
73
+
74
+ After fine tune
75
+ - Accuracy : 49%
76
+ - Consistency : 100%