sukara13 commited on
Commit
3efbeec
1 Parent(s): c48c9fd

Upload 12 files

Browse files
Files changed (6) hide show
  1. README.md +180 -34
  2. adapter_model.safetensors +1 -1
  3. optimizer.pt +3 -0
  4. rng_state.pth +3 -0
  5. scheduler.pt +3 -0
  6. trainer_state.json +544 -0
README.md CHANGED
@@ -1,56 +1,202 @@
1
  ---
2
  library_name: peft
3
- tags:
4
- - trl
5
- - sft
6
- - generated_from_trainer
7
  base_model: google/gemma-7b-it
8
- model-index:
9
- - name: gemma7bcars16
10
- results: []
11
  ---
12
 
13
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
- should probably proofread and complete it, then remove this comment. -->
15
 
16
- # gemma7bcars16
17
 
18
- This model is a fine-tuned version of [google/gemma-7b-it](https://huggingface.co/google/gemma-7b-it) on the None dataset.
19
 
20
- ## Model description
21
 
22
- More information needed
23
 
24
- ## Intended uses & limitations
25
 
26
- More information needed
27
 
28
- ## Training and evaluation data
29
 
30
- More information needed
31
 
32
- ## Training procedure
 
 
 
 
 
 
33
 
34
- ### Training hyperparameters
35
 
36
- The following hyperparameters were used during training:
37
- - learning_rate: 0.0001
38
- - train_batch_size: 1
39
- - eval_batch_size: 8
40
- - seed: 42
41
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
42
- - lr_scheduler_type: linear
43
- - lr_scheduler_warmup_steps: 100
44
- - num_epochs: 50
45
 
46
- ### Training results
 
 
47
 
 
48
 
 
49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50
  ### Framework versions
51
 
52
- - PEFT 0.11.1
53
- - Transformers 4.41.1
54
- - Pytorch 2.3.0+cu121
55
- - Datasets 2.19.1
56
- - Tokenizers 0.19.1
 
1
  ---
2
  library_name: peft
 
 
 
 
3
  base_model: google/gemma-7b-it
 
 
 
4
  ---
5
 
6
+ # Model Card for Model ID
 
7
 
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
+ ## Model Details
13
 
14
+ ### Model Description
15
 
16
+ <!-- Provide a longer summary of what this model is. -->
17
 
 
18
 
 
19
 
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
+ ### Model Sources [optional]
29
 
30
+ <!-- Provide the basic links for the model. -->
 
 
 
 
 
 
 
 
31
 
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
 
36
+ ## Uses
37
 
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
  ### Framework versions
201
 
202
+ - PEFT 0.11.1
 
 
 
 
adapter_model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:21dcb60a93a2a7bf2d5a4faa365e3e6babe8ac951cd74cf215442e937bc84a9d
3
  size 7247616
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2d3120223a7a46582877ab55ec43d06bfdc22be71b7acf6fad08776dc600f150
3
  size 7247616
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b27ed84eed014cec43ce849f591fd38f6fc31457c61558f1858dcfef8b473fba
3
+ size 14591866
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b107f4f51a620acf7d7def22167d614073e728ce071eddf6370fc90dcac002d8
3
+ size 14244
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5aa8512c9000fee5bf3cba709018038f09e899f6b31f45ba79e89838f8d39d70
3
+ size 1064
trainer_state.json ADDED
@@ -0,0 +1,544 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 45.625,
5
+ "eval_steps": 500,
6
+ "global_step": 730,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.625,
13
+ "grad_norm": 8.0,
14
+ "learning_rate": 1e-05,
15
+ "loss": 12.2241,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 1.25,
20
+ "grad_norm": 6.125,
21
+ "learning_rate": 2e-05,
22
+ "loss": 11.9861,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 1.875,
27
+ "grad_norm": 8.0625,
28
+ "learning_rate": 3e-05,
29
+ "loss": 11.267,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 2.5,
34
+ "grad_norm": 7.1875,
35
+ "learning_rate": 4e-05,
36
+ "loss": 10.0343,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 3.125,
41
+ "grad_norm": 6.8125,
42
+ "learning_rate": 5e-05,
43
+ "loss": 8.5167,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 3.75,
48
+ "grad_norm": 7.90625,
49
+ "learning_rate": 6e-05,
50
+ "loss": 7.3404,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 4.375,
55
+ "grad_norm": 10.0625,
56
+ "learning_rate": 7e-05,
57
+ "loss": 6.344,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 5.0,
62
+ "grad_norm": 12.875,
63
+ "learning_rate": 8e-05,
64
+ "loss": 5.2821,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 5.625,
69
+ "grad_norm": 14.375,
70
+ "learning_rate": 9e-05,
71
+ "loss": 3.6695,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 6.25,
76
+ "grad_norm": 14.6875,
77
+ "learning_rate": 0.0001,
78
+ "loss": 2.1107,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 6.875,
83
+ "grad_norm": 2.5,
84
+ "learning_rate": 9.857142857142858e-05,
85
+ "loss": 0.6406,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 7.5,
90
+ "grad_norm": 1.453125,
91
+ "learning_rate": 9.714285714285715e-05,
92
+ "loss": 0.3052,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 8.125,
97
+ "grad_norm": 1.4765625,
98
+ "learning_rate": 9.571428571428573e-05,
99
+ "loss": 0.3007,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 8.75,
104
+ "grad_norm": 1.8359375,
105
+ "learning_rate": 9.428571428571429e-05,
106
+ "loss": 0.2633,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 9.375,
111
+ "grad_norm": 25.75,
112
+ "learning_rate": 9.285714285714286e-05,
113
+ "loss": 0.2614,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 10.0,
118
+ "grad_norm": 0.89453125,
119
+ "learning_rate": 9.142857142857143e-05,
120
+ "loss": 0.2326,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 10.625,
125
+ "grad_norm": 1.9453125,
126
+ "learning_rate": 9e-05,
127
+ "loss": 0.2548,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 11.25,
132
+ "grad_norm": 1.6171875,
133
+ "learning_rate": 8.857142857142857e-05,
134
+ "loss": 0.232,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 11.875,
139
+ "grad_norm": 0.8515625,
140
+ "learning_rate": 8.714285714285715e-05,
141
+ "loss": 0.2321,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 12.5,
146
+ "grad_norm": 1.171875,
147
+ "learning_rate": 8.571428571428571e-05,
148
+ "loss": 0.2136,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 13.125,
153
+ "grad_norm": 1.1015625,
154
+ "learning_rate": 8.428571428571429e-05,
155
+ "loss": 0.2142,
156
+ "step": 210
157
+ },
158
+ {
159
+ "epoch": 13.75,
160
+ "grad_norm": 1.7109375,
161
+ "learning_rate": 8.285714285714287e-05,
162
+ "loss": 0.2018,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 14.375,
167
+ "grad_norm": 0.76171875,
168
+ "learning_rate": 8.142857142857143e-05,
169
+ "loss": 0.1877,
170
+ "step": 230
171
+ },
172
+ {
173
+ "epoch": 15.0,
174
+ "grad_norm": 0.875,
175
+ "learning_rate": 8e-05,
176
+ "loss": 0.1963,
177
+ "step": 240
178
+ },
179
+ {
180
+ "epoch": 15.625,
181
+ "grad_norm": 1.71875,
182
+ "learning_rate": 7.857142857142858e-05,
183
+ "loss": 0.1883,
184
+ "step": 250
185
+ },
186
+ {
187
+ "epoch": 16.25,
188
+ "grad_norm": 0.8671875,
189
+ "learning_rate": 7.714285714285715e-05,
190
+ "loss": 0.1972,
191
+ "step": 260
192
+ },
193
+ {
194
+ "epoch": 16.875,
195
+ "grad_norm": 2.953125,
196
+ "learning_rate": 7.571428571428571e-05,
197
+ "loss": 0.1741,
198
+ "step": 270
199
+ },
200
+ {
201
+ "epoch": 17.5,
202
+ "grad_norm": 0.94921875,
203
+ "learning_rate": 7.428571428571429e-05,
204
+ "loss": 0.1656,
205
+ "step": 280
206
+ },
207
+ {
208
+ "epoch": 18.125,
209
+ "grad_norm": 0.734375,
210
+ "learning_rate": 7.285714285714286e-05,
211
+ "loss": 0.1677,
212
+ "step": 290
213
+ },
214
+ {
215
+ "epoch": 18.75,
216
+ "grad_norm": 0.91796875,
217
+ "learning_rate": 7.142857142857143e-05,
218
+ "loss": 0.1572,
219
+ "step": 300
220
+ },
221
+ {
222
+ "epoch": 19.375,
223
+ "grad_norm": 1.359375,
224
+ "learning_rate": 7e-05,
225
+ "loss": 0.1567,
226
+ "step": 310
227
+ },
228
+ {
229
+ "epoch": 20.0,
230
+ "grad_norm": 1.4375,
231
+ "learning_rate": 6.857142857142858e-05,
232
+ "loss": 0.1522,
233
+ "step": 320
234
+ },
235
+ {
236
+ "epoch": 20.625,
237
+ "grad_norm": 0.55859375,
238
+ "learning_rate": 6.714285714285714e-05,
239
+ "loss": 0.144,
240
+ "step": 330
241
+ },
242
+ {
243
+ "epoch": 21.25,
244
+ "grad_norm": 0.51953125,
245
+ "learning_rate": 6.571428571428571e-05,
246
+ "loss": 0.1488,
247
+ "step": 340
248
+ },
249
+ {
250
+ "epoch": 21.875,
251
+ "grad_norm": 0.89453125,
252
+ "learning_rate": 6.428571428571429e-05,
253
+ "loss": 0.1504,
254
+ "step": 350
255
+ },
256
+ {
257
+ "epoch": 22.5,
258
+ "grad_norm": 0.5078125,
259
+ "learning_rate": 6.285714285714286e-05,
260
+ "loss": 0.1332,
261
+ "step": 360
262
+ },
263
+ {
264
+ "epoch": 23.125,
265
+ "grad_norm": 0.6796875,
266
+ "learning_rate": 6.142857142857143e-05,
267
+ "loss": 0.136,
268
+ "step": 370
269
+ },
270
+ {
271
+ "epoch": 23.75,
272
+ "grad_norm": 0.66015625,
273
+ "learning_rate": 6e-05,
274
+ "loss": 0.135,
275
+ "step": 380
276
+ },
277
+ {
278
+ "epoch": 24.375,
279
+ "grad_norm": 0.78515625,
280
+ "learning_rate": 5.8571428571428575e-05,
281
+ "loss": 0.1264,
282
+ "step": 390
283
+ },
284
+ {
285
+ "epoch": 25.0,
286
+ "grad_norm": 0.5703125,
287
+ "learning_rate": 5.714285714285714e-05,
288
+ "loss": 0.1298,
289
+ "step": 400
290
+ },
291
+ {
292
+ "epoch": 25.625,
293
+ "grad_norm": 0.5546875,
294
+ "learning_rate": 5.571428571428572e-05,
295
+ "loss": 0.1219,
296
+ "step": 410
297
+ },
298
+ {
299
+ "epoch": 26.25,
300
+ "grad_norm": 0.65625,
301
+ "learning_rate": 5.428571428571428e-05,
302
+ "loss": 0.1254,
303
+ "step": 420
304
+ },
305
+ {
306
+ "epoch": 26.875,
307
+ "grad_norm": 0.73828125,
308
+ "learning_rate": 5.285714285714286e-05,
309
+ "loss": 0.1229,
310
+ "step": 430
311
+ },
312
+ {
313
+ "epoch": 27.5,
314
+ "grad_norm": 0.6484375,
315
+ "learning_rate": 5.142857142857143e-05,
316
+ "loss": 0.1166,
317
+ "step": 440
318
+ },
319
+ {
320
+ "epoch": 28.125,
321
+ "grad_norm": 0.66796875,
322
+ "learning_rate": 5e-05,
323
+ "loss": 0.1178,
324
+ "step": 450
325
+ },
326
+ {
327
+ "epoch": 28.75,
328
+ "grad_norm": 0.82421875,
329
+ "learning_rate": 4.8571428571428576e-05,
330
+ "loss": 0.1141,
331
+ "step": 460
332
+ },
333
+ {
334
+ "epoch": 29.375,
335
+ "grad_norm": 0.62109375,
336
+ "learning_rate": 4.714285714285714e-05,
337
+ "loss": 0.1138,
338
+ "step": 470
339
+ },
340
+ {
341
+ "epoch": 30.0,
342
+ "grad_norm": 0.765625,
343
+ "learning_rate": 4.5714285714285716e-05,
344
+ "loss": 0.1149,
345
+ "step": 480
346
+ },
347
+ {
348
+ "epoch": 30.625,
349
+ "grad_norm": 0.546875,
350
+ "learning_rate": 4.428571428571428e-05,
351
+ "loss": 0.1043,
352
+ "step": 490
353
+ },
354
+ {
355
+ "epoch": 31.25,
356
+ "grad_norm": 0.515625,
357
+ "learning_rate": 4.2857142857142856e-05,
358
+ "loss": 0.1075,
359
+ "step": 500
360
+ },
361
+ {
362
+ "epoch": 31.875,
363
+ "grad_norm": 0.66796875,
364
+ "learning_rate": 4.1428571428571437e-05,
365
+ "loss": 0.107,
366
+ "step": 510
367
+ },
368
+ {
369
+ "epoch": 32.5,
370
+ "grad_norm": 0.75,
371
+ "learning_rate": 4e-05,
372
+ "loss": 0.104,
373
+ "step": 520
374
+ },
375
+ {
376
+ "epoch": 33.125,
377
+ "grad_norm": 0.5859375,
378
+ "learning_rate": 3.857142857142858e-05,
379
+ "loss": 0.1089,
380
+ "step": 530
381
+ },
382
+ {
383
+ "epoch": 33.75,
384
+ "grad_norm": 0.69140625,
385
+ "learning_rate": 3.7142857142857143e-05,
386
+ "loss": 0.1001,
387
+ "step": 540
388
+ },
389
+ {
390
+ "epoch": 34.375,
391
+ "grad_norm": 0.58203125,
392
+ "learning_rate": 3.571428571428572e-05,
393
+ "loss": 0.1043,
394
+ "step": 550
395
+ },
396
+ {
397
+ "epoch": 35.0,
398
+ "grad_norm": 0.66015625,
399
+ "learning_rate": 3.428571428571429e-05,
400
+ "loss": 0.101,
401
+ "step": 560
402
+ },
403
+ {
404
+ "epoch": 35.625,
405
+ "grad_norm": 0.6953125,
406
+ "learning_rate": 3.285714285714286e-05,
407
+ "loss": 0.0987,
408
+ "step": 570
409
+ },
410
+ {
411
+ "epoch": 36.25,
412
+ "grad_norm": 0.62890625,
413
+ "learning_rate": 3.142857142857143e-05,
414
+ "loss": 0.0976,
415
+ "step": 580
416
+ },
417
+ {
418
+ "epoch": 36.875,
419
+ "grad_norm": 0.82421875,
420
+ "learning_rate": 3e-05,
421
+ "loss": 0.0984,
422
+ "step": 590
423
+ },
424
+ {
425
+ "epoch": 37.5,
426
+ "grad_norm": 0.703125,
427
+ "learning_rate": 2.857142857142857e-05,
428
+ "loss": 0.0891,
429
+ "step": 600
430
+ },
431
+ {
432
+ "epoch": 38.125,
433
+ "grad_norm": 0.60546875,
434
+ "learning_rate": 2.714285714285714e-05,
435
+ "loss": 0.0943,
436
+ "step": 610
437
+ },
438
+ {
439
+ "epoch": 38.75,
440
+ "grad_norm": 0.63671875,
441
+ "learning_rate": 2.5714285714285714e-05,
442
+ "loss": 0.0898,
443
+ "step": 620
444
+ },
445
+ {
446
+ "epoch": 39.375,
447
+ "grad_norm": 0.486328125,
448
+ "learning_rate": 2.4285714285714288e-05,
449
+ "loss": 0.0898,
450
+ "step": 630
451
+ },
452
+ {
453
+ "epoch": 40.0,
454
+ "grad_norm": 1.078125,
455
+ "learning_rate": 2.2857142857142858e-05,
456
+ "loss": 0.0931,
457
+ "step": 640
458
+ },
459
+ {
460
+ "epoch": 40.625,
461
+ "grad_norm": 0.404296875,
462
+ "learning_rate": 2.1428571428571428e-05,
463
+ "loss": 0.0901,
464
+ "step": 650
465
+ },
466
+ {
467
+ "epoch": 41.25,
468
+ "grad_norm": 0.640625,
469
+ "learning_rate": 2e-05,
470
+ "loss": 0.0931,
471
+ "step": 660
472
+ },
473
+ {
474
+ "epoch": 41.875,
475
+ "grad_norm": 0.6953125,
476
+ "learning_rate": 1.8571428571428572e-05,
477
+ "loss": 0.0921,
478
+ "step": 670
479
+ },
480
+ {
481
+ "epoch": 42.5,
482
+ "grad_norm": 0.671875,
483
+ "learning_rate": 1.7142857142857145e-05,
484
+ "loss": 0.091,
485
+ "step": 680
486
+ },
487
+ {
488
+ "epoch": 43.125,
489
+ "grad_norm": 0.671875,
490
+ "learning_rate": 1.5714285714285715e-05,
491
+ "loss": 0.0943,
492
+ "step": 690
493
+ },
494
+ {
495
+ "epoch": 43.75,
496
+ "grad_norm": 0.734375,
497
+ "learning_rate": 1.4285714285714285e-05,
498
+ "loss": 0.0933,
499
+ "step": 700
500
+ },
501
+ {
502
+ "epoch": 44.375,
503
+ "grad_norm": 0.80859375,
504
+ "learning_rate": 1.2857142857142857e-05,
505
+ "loss": 0.0907,
506
+ "step": 710
507
+ },
508
+ {
509
+ "epoch": 45.0,
510
+ "grad_norm": 0.7421875,
511
+ "learning_rate": 1.1428571428571429e-05,
512
+ "loss": 0.0907,
513
+ "step": 720
514
+ },
515
+ {
516
+ "epoch": 45.625,
517
+ "grad_norm": 0.97265625,
518
+ "learning_rate": 1e-05,
519
+ "loss": 0.0882,
520
+ "step": 730
521
+ }
522
+ ],
523
+ "logging_steps": 10,
524
+ "max_steps": 800,
525
+ "num_input_tokens_seen": 0,
526
+ "num_train_epochs": 50,
527
+ "save_steps": 10,
528
+ "stateful_callbacks": {
529
+ "TrainerControl": {
530
+ "args": {
531
+ "should_epoch_stop": false,
532
+ "should_evaluate": false,
533
+ "should_log": false,
534
+ "should_save": true,
535
+ "should_training_stop": false
536
+ },
537
+ "attributes": {}
538
+ }
539
+ },
540
+ "total_flos": 2799985827465216.0,
541
+ "train_batch_size": 1,
542
+ "trial_name": null,
543
+ "trial_params": null
544
+ }