Add SetFit model
Browse files- 1_Pooling/config.json +2 -1
- README.md +8 -8
- config_sentence_transformers.json +7 -4
- model.safetensors +1 -1
- model_head.pkl +2 -2
1_Pooling/config.json
CHANGED
@@ -5,5 +5,6 @@
|
|
5 |
"pooling_mode_max_tokens": false,
|
6 |
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
"pooling_mode_weightedmean_tokens": false,
|
8 |
-
"pooling_mode_lasttoken": false
|
|
|
9 |
}
|
|
|
5 |
"pooling_mode_max_tokens": false,
|
6 |
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
}
|
README.md
CHANGED
@@ -35,7 +35,7 @@ model-index:
|
|
35 |
split: test
|
36 |
metrics:
|
37 |
- type: accuracy
|
38 |
-
value: 0.
|
39 |
name: Accuracy
|
40 |
---
|
41 |
|
@@ -77,7 +77,7 @@ The model has been trained using an efficient few-shot learning technique that i
|
|
77 |
### Metrics
|
78 |
| Label | Accuracy |
|
79 |
|:--------|:---------|
|
80 |
-
| **all** | 0.
|
81 |
|
82 |
## Uses
|
83 |
|
@@ -95,7 +95,7 @@ Then you can load this model and run inference.
|
|
95 |
from setfit import SetFitModel
|
96 |
|
97 |
# Download from the 🤗 Hub
|
98 |
-
model = SetFitModel.from_pretrained("
|
99 |
# Run inference
|
100 |
preds = model("the speakerphone , the radio , all features work perfectly .")
|
101 |
```
|
@@ -156,15 +156,15 @@ preds = model("the speakerphone , the radio , all features work perfectly .")
|
|
156 |
### Training Results
|
157 |
| Epoch | Step | Training Loss | Validation Loss |
|
158 |
|:-----:|:----:|:-------------:|:---------------:|
|
159 |
-
| 0.1 | 1 | 0.
|
160 |
|
161 |
### Framework Versions
|
162 |
-
- Python: 3.
|
163 |
- SetFit: 1.0.3
|
164 |
-
- Sentence Transformers:
|
165 |
- Transformers: 4.40.2
|
166 |
-
- PyTorch: 2.
|
167 |
-
- Datasets: 2.
|
168 |
- Tokenizers: 0.19.1
|
169 |
|
170 |
## Citation
|
|
|
35 |
split: test
|
36 |
metrics:
|
37 |
- type: accuracy
|
38 |
+
value: 0.8313413014608234
|
39 |
name: Accuracy
|
40 |
---
|
41 |
|
|
|
77 |
### Metrics
|
78 |
| Label | Accuracy |
|
79 |
|:--------|:---------|
|
80 |
+
| **all** | 0.8313 |
|
81 |
|
82 |
## Uses
|
83 |
|
|
|
95 |
from setfit import SetFitModel
|
96 |
|
97 |
# Download from the 🤗 Hub
|
98 |
+
model = SetFitModel.from_pretrained("sultanaw/fine_tuned_setfit_pydata_demo")
|
99 |
# Run inference
|
100 |
preds = model("the speakerphone , the radio , all features work perfectly .")
|
101 |
```
|
|
|
156 |
### Training Results
|
157 |
| Epoch | Step | Training Loss | Validation Loss |
|
158 |
|:-----:|:----:|:-------------:|:---------------:|
|
159 |
+
| 0.1 | 1 | 0.2267 | - |
|
160 |
|
161 |
### Framework Versions
|
162 |
+
- Python: 3.10.12
|
163 |
- SetFit: 1.0.3
|
164 |
+
- Sentence Transformers: 3.0.1
|
165 |
- Transformers: 4.40.2
|
166 |
+
- PyTorch: 2.3.0+cu121
|
167 |
+
- Datasets: 2.20.0
|
168 |
- Tokenizers: 0.19.1
|
169 |
|
170 |
## Citation
|
config_sentence_transformers.json
CHANGED
@@ -1,7 +1,10 @@
|
|
1 |
{
|
2 |
"__version__": {
|
3 |
-
"sentence_transformers": "
|
4 |
-
"transformers": "4.
|
5 |
-
"pytorch": "
|
6 |
-
}
|
|
|
|
|
|
|
7 |
}
|
|
|
1 |
{
|
2 |
"__version__": {
|
3 |
+
"sentence_transformers": "3.0.1",
|
4 |
+
"transformers": "4.40.2",
|
5 |
+
"pytorch": "2.3.0+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
}
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 437967672
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9b3973f0a70794e20d19c73b18a6574625bf3787c699c254435d962007d3c089
|
3 |
size 437967672
|
model_head.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:32b6cc3c1572cb97d128dc0a026ad2e532d27125c50acd489c3941c41a05b814
|
3 |
+
size 7007
|