sumet commited on
Commit
cb07e8a
1 Parent(s): 1b227ae

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +24 -24
README.md CHANGED
@@ -22,7 +22,7 @@ model-index:
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
- value: 0.86
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -32,8 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
32
 
33
  This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the GTZAN dataset.
34
  It achieves the following results on the evaluation set:
35
- - Loss: 0.5051
36
- - Accuracy: 0.86
37
 
38
  ## Model description
39
 
@@ -55,7 +55,7 @@ The following hyperparameters were used during training:
55
  - learning_rate: 5e-05
56
  - train_batch_size: 2
57
  - eval_batch_size: 2
58
- - seed: 42
59
  - gradient_accumulation_steps: 4
60
  - total_train_batch_size: 8
61
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
@@ -67,26 +67,26 @@ The following hyperparameters were used during training:
67
 
68
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
- | 0.8767 | 1.0 | 112 | 0.6930 | 0.78 |
71
- | 0.5251 | 2.0 | 225 | 0.5514 | 0.82 |
72
- | 0.5388 | 3.0 | 337 | 0.5380 | 0.81 |
73
- | 0.1679 | 4.0 | 450 | 0.3927 | 0.9 |
74
- | 0.0227 | 5.0 | 562 | 0.5077 | 0.87 |
75
- | 0.0012 | 6.0 | 675 | 0.5441 | 0.88 |
76
- | 0.0472 | 7.0 | 787 | 0.7029 | 0.86 |
77
- | 0.0015 | 8.0 | 900 | 0.5576 | 0.84 |
78
- | 0.0095 | 9.0 | 1012 | 0.6228 | 0.85 |
79
- | 0.0002 | 10.0 | 1125 | 0.4116 | 0.88 |
80
- | 0.0001 | 11.0 | 1237 | 0.7136 | 0.82 |
81
- | 0.0001 | 12.0 | 1350 | 0.4885 | 0.88 |
82
- | 0.0001 | 13.0 | 1462 | 0.4831 | 0.87 |
83
- | 0.0001 | 14.0 | 1575 | 0.4606 | 0.87 |
84
- | 0.0 | 15.0 | 1687 | 0.4930 | 0.87 |
85
- | 0.0 | 16.0 | 1800 | 0.4937 | 0.87 |
86
- | 0.0 | 17.0 | 1912 | 0.4974 | 0.86 |
87
- | 0.0 | 18.0 | 2025 | 0.4989 | 0.86 |
88
- | 0.0 | 19.0 | 2137 | 0.5060 | 0.86 |
89
- | 0.0 | 19.91 | 2240 | 0.5051 | 0.86 |
90
 
91
 
92
  ### Framework versions
 
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
+ value: 0.88
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
32
 
33
  This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the GTZAN dataset.
34
  It achieves the following results on the evaluation set:
35
+ - Loss: 0.5086
36
+ - Accuracy: 0.88
37
 
38
  ## Model description
39
 
 
55
  - learning_rate: 5e-05
56
  - train_batch_size: 2
57
  - eval_batch_size: 2
58
+ - seed: 14
59
  - gradient_accumulation_steps: 4
60
  - total_train_batch_size: 8
61
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
 
67
 
68
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
+ | 0.5982 | 1.0 | 112 | 0.5195 | 0.83 |
71
+ | 0.3962 | 2.0 | 225 | 0.5597 | 0.81 |
72
+ | 0.3143 | 3.0 | 337 | 0.7567 | 0.83 |
73
+ | 0.0548 | 4.0 | 450 | 0.5270 | 0.86 |
74
+ | 0.0119 | 5.0 | 562 | 0.5813 | 0.88 |
75
+ | 0.2503 | 6.0 | 675 | 0.7523 | 0.86 |
76
+ | 0.0008 | 7.0 | 787 | 0.6239 | 0.85 |
77
+ | 0.0003 | 8.0 | 900 | 0.4949 | 0.9 |
78
+ | 0.0001 | 9.0 | 1012 | 0.5706 | 0.88 |
79
+ | 0.0003 | 10.0 | 1125 | 0.4898 | 0.92 |
80
+ | 0.0001 | 11.0 | 1237 | 0.5281 | 0.89 |
81
+ | 0.0001 | 12.0 | 1350 | 0.5197 | 0.88 |
82
+ | 0.0002 | 13.0 | 1462 | 0.5036 | 0.9 |
83
+ | 0.0 | 14.0 | 1575 | 0.5362 | 0.9 |
84
+ | 0.0 | 15.0 | 1687 | 0.5065 | 0.89 |
85
+ | 0.0 | 16.0 | 1800 | 0.5011 | 0.9 |
86
+ | 0.0 | 17.0 | 1912 | 0.5025 | 0.88 |
87
+ | 0.0 | 18.0 | 2025 | 0.5027 | 0.88 |
88
+ | 0.0 | 19.0 | 2137 | 0.5074 | 0.88 |
89
+ | 0.0 | 19.91 | 2240 | 0.5086 | 0.88 |
90
 
91
 
92
  ### Framework versions