Initial commit
Browse files- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +105 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1126.14 +/- 41.60
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1de62a98958d78d748aefaff621d1a76d13ea504d0edb17c4efc9b32fcd0f867
|
3 |
+
size 129195
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f31746fdcb0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f31746fdd40>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f31746fddd0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f31746fde60>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f31746fdef0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f31746fdf80>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f31746ff050>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f31746ff0e0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f31746ff170>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f31746ff200>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f31746ff290>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f31746d63c0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {
|
23 |
+
":type:": "<class 'dict'>",
|
24 |
+
":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
25 |
+
"log_std_init": -2,
|
26 |
+
"ortho_init": false,
|
27 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
28 |
+
"optimizer_kwargs": {
|
29 |
+
"alpha": 0.99,
|
30 |
+
"eps": 1e-05,
|
31 |
+
"weight_decay": 0
|
32 |
+
}
|
33 |
+
},
|
34 |
+
"observation_space": {
|
35 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
36 |
+
":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=",
|
37 |
+
"dtype": "float32",
|
38 |
+
"_shape": [
|
39 |
+
28
|
40 |
+
],
|
41 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
42 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
43 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
44 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"_np_random": null
|
46 |
+
},
|
47 |
+
"action_space": {
|
48 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
49 |
+
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu",
|
50 |
+
"dtype": "float32",
|
51 |
+
"_shape": [
|
52 |
+
8
|
53 |
+
],
|
54 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
55 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
56 |
+
"bounded_below": "[ True True True True True True True True]",
|
57 |
+
"bounded_above": "[ True True True True True True True True]",
|
58 |
+
"_np_random": null
|
59 |
+
},
|
60 |
+
"n_envs": 4,
|
61 |
+
"num_timesteps": 2000000,
|
62 |
+
"_total_timesteps": 2000000,
|
63 |
+
"_num_timesteps_at_start": 0,
|
64 |
+
"seed": null,
|
65 |
+
"action_noise": null,
|
66 |
+
"start_time": 1667372339719437985,
|
67 |
+
"learning_rate": 0.00096,
|
68 |
+
"tensorboard_log": "./tensorboard",
|
69 |
+
"lr_schedule": {
|
70 |
+
":type:": "<class 'function'>",
|
71 |
+
":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
72 |
+
},
|
73 |
+
"_last_obs": {
|
74 |
+
":type:": "<class 'numpy.ndarray'>",
|
75 |
+
":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAmSEYv5JVnb52dR0/KXAkv8rCOL/jBMk92kbyvjWEkTsWX5u8Hw8Qvyf1ML96D0G+lsF0vzKsPz5nyus+LUwfPsbm4j59osw9ScORPHX2m72upES8eH4Fvurl0D2h6SQ+QoRmv+6mHT+iAI8+bfUuPxaVjD/pm0u/CMsQPy6p+L24O06/0m8kPYeHDT/gRwy/1hbrv1G4Fb+PwPI/Fiegv23HML+1XP69ddBuv94spj4YetI+ypOvv5tZPD+A7c88rcCav4Wdq75CifY+vVu6PUKEZr/uph0/kiRlwG31Lj8l86G+alyoPk22xT7HhYW+IyBNv2atGT5u7aC+yyJfPyYpX77+l48+0jXOviH3Nj4XVT2/KcYWvnUg9DwFIlo/o3m2PhbwTb7mYiq/f0aTPhW4TT+MWps+Llgrv/pZkr93Jo4/7qYdP6IAjz5t9S4/En5Pv+5cSr8nKhE/xZ66vrxfr78OVoi/cOuqPoiXh75J22Y+OSVVP68e9r7PG28/u3sGv3R26L6hvrQ+lwQ6QKgzhD9CCYu+Qg4tP+SutL6yXMg+yKNmP9Jwgb43JGw/QoRmv+6mHT+iAI8+bfUuP5R0lGIu"
|
76 |
+
},
|
77 |
+
"_last_episode_starts": {
|
78 |
+
":type:": "<class 'numpy.ndarray'>",
|
79 |
+
":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="
|
80 |
+
},
|
81 |
+
"_last_original_obs": {
|
82 |
+
":type:": "<class 'numpy.ndarray'>",
|
83 |
+
":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAANv3pjYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAW5Ak9AAAAABrg3r8AAAAAfy1lPQAAAAB9muc/AAAAAAaW3D0AAAAAdRwBQAAAAADmOLq9AAAAAKvF4r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5Yns2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAXVgGvQAAAAAeePq/AAAAAOKH9D0AAAAABSsAQAAAAAB9kMC9AAAAADNJ4D8AAAAAs+HSvQAAAAA9+e6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbkrUtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgGsgPD0AAAAAZzjrvwAAAACQ7Q6+AAAAAL4O4z8AAAAA9qoAPQAAAABmD+E/AAAAAL7g9T0AAAAAfx7pvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAInvPrQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBS3UY9AAAAAJjy8L8AAAAAALS9PQAAAAAhquI/AAAAADk3A74AAAAASNjxPwAAAADjNaS9AAAAAIjl878AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"
|
84 |
+
},
|
85 |
+
"_episode_num": 0,
|
86 |
+
"use_sde": true,
|
87 |
+
"sde_sample_freq": -1,
|
88 |
+
"_current_progress_remaining": 0.0,
|
89 |
+
"ep_info_buffer": {
|
90 |
+
":type:": "<class 'collections.deque'>",
|
91 |
+
":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJZ15XdTHbSMAWyUTegDjAF0lEdAqHgt4TsY23V9lChoBkdAkP2ZzPrv9mgHTegDaAhHQKh5/W7OE/V1fZQoaAZHQJOxCPwNLDhoB03oA2gIR0CogT1IiC8OdX2UKGgGR0CRd0XNTtLMaAdN6ANoCEdAqIKdQbdadXV9lChoBkdAlIe8IZ62OWgHTegDaAhHQKiErK6nR9h1fZQoaAZHQJPz1SJj2BdoB03oA2gIR0CohoTn7pFDdX2UKGgGR0CM89JL/S6UaAdN6ANoCEdAqI3OwkgOjXV9lChoBkdAlIjsO5J9RmgHTegDaAhHQKiPM8Djin51fZQoaAZHQJN9dTn7pFFoB03oA2gIR0CokTMINVindX2UKGgGR0CVbHf51vETaAdN6ANoCEdAqJL/BeokzHV9lChoBkdAkygSxJNCaGgHTegDaAhHQKiaKVKwpvx1fZQoaAZHQJUGJEofCANoB03oA2gIR0Com33iiqQzdX2UKGgGR0CRdQpSrHU+aAdN6ANoCEdAqJ2MjNY8uHV9lChoBkdAkr5Al4TsY2gHTegDaAhHQKifWCYkVvd1fZQoaAZHQJS3RLVWjoJoB03oA2gIR0Copmuy/sVtdX2UKGgGR0CVTGuaF23baAdN6ANoCEdAqKfMMXrMT3V9lChoBkdAlNdiUHIIW2gHTegDaAhHQKip5kKeCkJ1fZQoaAZHQJODRhx5s0poB03oA2gIR0Coq7hTGYKIdX2UKGgGR0CT4WRmbsniaAdN6ANoCEdAqLL4xvegtnV9lChoBkdAk6UPDk2gnWgHTegDaAhHQKi0Sy9mHxl1fZQoaAZHQJPCsPWhAW1oB03oA2gIR0CotlziS7oTdX2UKGgGR0CRkqUrCm/GaAdN6ANoCEdAqLgncnE2pHV9lChoBkdAlBuUbo8p1GgHTegDaAhHQKi/ZpGFzuF1fZQoaAZHQIS1lA5aNdZoB03oA2gIR0CowMHbRF7VdX2UKGgGR0CTJyZTyauwaAdN6ANoCEdAqMLQM2FWXHV9lChoBkdAkD9mzByjpWgHTegDaAhHQKjEi150KZ51fZQoaAZHQI+flMGorFxoB03oA2gIR0Coy/IyCWeIdX2UKGgGR0B5M6LrHEMtaAdN6ANoCEdAqM1ZOP/7znV9lChoBkdAkwKIVh1DB2gHTegDaAhHQKjPZUEPlMh1fZQoaAZHQJOej1uivgZoB03oA2gIR0Co0S8kD6nBdX2UKGgGR0CT3y2L5ylvaAdN6ANoCEdAqNhZ9w3o93V9lChoBkdAk0AhR/EwWWgHTegDaAhHQKjZx4JNTLp1fZQoaAZHQJNz69kBjnVoB03oA2gIR0Co29MgEEDAdX2UKGgGR0B0PU//vOQhaAdN6ANoCEdAqN2oToMa0nV9lChoBkdAk+Sipm29c2gHTegDaAhHQKjmtXpW3jN1fZQoaAZHQJTJR9Wp6yBoB03oA2gIR0Co6A+V9nbqdX2UKGgGR0B70rWH1vl2aAdN6ANoCEdAqOovjU/fO3V9lChoBkdAfTUxXnyNGWgHTegDaAhHQKjsB1hb4ah1fZQoaAZHQJWZu5AhStNoB03oA2gIR0Co805nlGPQdX2UKGgGR0CVN31q33HraAdN6ANoCEdAqPSy/h2nsXV9lChoBkdAlcR39BKL9GgHTegDaAhHQKj2vmOlwcZ1fZQoaAZHQJVn03DNyHVoB03oA2gIR0Co+H8/lhgFdX2UKGgGR0CTLFtqYZ2qaAdN6ANoCEdAqP/IvJzT4XV9lChoBkdAlJXMa4tpVWgHTegDaAhHQKkBKKiwjdJ1fZQoaAZHQInRaKgqVhVoB03oA2gIR0CpA0MG5c1PdX2UKGgGR0CTa0XV9Wp7aAdN6ANoCEdAqQUfvc8DCHV9lChoBkdAlXjrl7tzCGgHTegDaAhHQKkMctwJgLJ1fZQoaAZHQIgHzvy9VWFoB03oA2gIR0CpDcSqMm4RdX2UKGgGR0CTAdT+ee4DaAdN6ANoCEdAqQ/WwgTyrnV9lChoBkdAkYJQw482aWgHTegDaAhHQKkRopLmITJ1fZQoaAZHQJDNF8NQTEloB03oA2gIR0CpGNY5T6zmdX2UKGgGR0CWGrgjhUBGaAdN6ANoCEdAqRop95QgtHV9lChoBkdAlHkYQz1scmgHTegDaAhHQKkcOSOBDoh1fZQoaAZHQJSu2j4593NoB03oA2gIR0CpHf7nHNordX2UKGgGR0CT5GKbKA8TaAdN6ANoCEdAqSUwNqgyunV9lChoBkdAlRbEknkT6GgHTegDaAhHQKkminDR+jN1fZQoaAZHQJSr6BvrGBFoB03oA2gIR0CpKJnM+u/2dX2UKGgGR0CV/A2DQJHBaAdN6ANoCEdAqSpnllsguHV9lChoBkdAj3cfek56t2gHTegDaAhHQKkx99pAUtZ1fZQoaAZHQJKDvG4qgAZoB03oA2gIR0CpM/ChnJ1adX2UKGgGR0CQOxvZyuIRaAdN6ANoCEdAqTb0XtShrXV9lChoBkdAkNh3xnWat2gHTegDaAhHQKk4y6WgOBl1fZQoaAZHQIlVlMGorFxoB03oA2gIR0CpQCEvkBCEdX2UKGgGR0CI3Bqv/zasaAdN6ANoCEdAqUGPWUbDM3V9lChoBkdAfJtiXpnpS2gHTegDaAhHQKlDq4ZMtbt1fZQoaAZHQIVTJvgm7atoB03oA2gIR0CpRaTpPhybdX2UKGgGR0CSAgC5mRNiaAdN6ANoCEdAqUz+hbnoxHV9lChoBkdAj+iqBun/DWgHTegDaAhHQKlOs7+T/yZ1fZQoaAZHQIAhbUCq6vtoB03oA2gIR0CpUdK+ajN7dX2UKGgGR0CM6QxtYSxraAdN6ANoCEdAqVQ0kWykbnV9lChoBkdAkVRt+b3GoGgHTegDaAhHQKlbcOVgQYl1fZQoaAZHQHV6I8yN4qxoB03oA2gIR0CpXM98JD3NdX2UKGgGR0CQRFKWLP2PaAdN6ANoCEdAqV7tyq+8G3V9lChoBkdAkZpUknkT6GgHTegDaAhHQKlgwoNNJvp1fZQoaAZHQIUNa4QSSNhoB03oA2gIR0CpaAMI/qxDdX2UKGgGR0CL8zghr30xaAdN6ANoCEdAqWlfFPznR3V9lChoBkdAhyb/Kp1ifGgHTegDaAhHQKlrj2A5Jbt1fZQoaAZHQIJwNSwW30BoB03oA2gIR0CpbVsfq5bydX2UKGgGR0CBmkIgvDgqaAdN6ANoCEdAqXRzZBcAznV9lChoBkdAimvkfDDTB2gHTegDaAhHQKl13uiN83N1fZQoaAZHQI713UrkKeFoB03oA2gIR0Cpd/ZCF9KFdX2UKGgGR0CDGaPFvQ4TaAdN6ANoCEdAqXnFiKBNEnV9lChoBkdAhv65oXbdrWgHTegDaAhHQKmA+2b5M111fZQoaAZHQIeBvzJ6po9oB03oA2gIR0CpgmO1v2oOdX2UKGgGR0CFV8JhOP/8aAdN6ANoCEdAqYR/ZVXFLnV9lChoBkdAifcnavicXmgHTegDaAhHQKmGP8E3bVV1fZQoaAZHQIjW5R8+ialoB03oA2gIR0CpjUvtUn5SdX2UKGgGR0CHcxlEJBw/aAdN6ANoCEdAqY60Ft8/lnV9lChoBkdAjiMa8Hv+fmgHTegDaAhHQKmQvMC9ytF1fZQoaAZHQIyB8OmR/3FoB03oA2gIR0CpkoNw71ZldX2UKGgGR0CJul4Oc2BKaAdN6ANoCEdAqZnJiobXH3V9lChoBkdAgXI94VymymgHTegDaAhHQKmbH6WPcSJ1fZQoaAZHQIwFbi2lVLloB03oA2gIR0CpnTRs2vSudX2UKGgGR0CRX296Tnq3aAdN6ANoCEdAqZ8BYFJQL3V9lChoBkdAjTBYI8hcJWgHTegDaAhHQKmmNllK9PF1fZQoaAZHQIgJJrrPdEdoB03oA2gIR0Cpp5ot+TePdX2UKGgGR0COzzkmx+rmaAdN6ANoCEdAqanK6WgOBnV9lChoBkdAkGsxG+bmVGgHTegDaAhHQKmrjvCuU2V1fZQoaAZHQJB4tv60pmVoB03oA2gIR0CpsqqNQ0oCdX2UKGgGR0CRkEeQdS2qaAdN6ANoCEdAqbP/fVI7NnVlLg=="
|
92 |
+
},
|
93 |
+
"ep_success_buffer": {
|
94 |
+
":type:": "<class 'collections.deque'>",
|
95 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
96 |
+
},
|
97 |
+
"_n_updates": 62500,
|
98 |
+
"n_steps": 8,
|
99 |
+
"gamma": 0.99,
|
100 |
+
"gae_lambda": 0.9,
|
101 |
+
"ent_coef": 0.0,
|
102 |
+
"vf_coef": 0.4,
|
103 |
+
"max_grad_norm": 0.5,
|
104 |
+
"normalize_advantage": false
|
105 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3a37c173a5c0c056b383bb1aeee0727237a26b625e843837906d173b3e800e6a
|
3 |
+
size 56126
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a86eebe2f1338a1f0c2ff51bf64d1258e51bd7f5d67635255cfa51c3eb57bd84
|
3 |
+
size 56766
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.7.15
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.12.1+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f31746fdcb0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f31746fdd40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f31746fddd0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f31746fde60>", "_build": "<function ActorCriticPolicy._build at 0x7f31746fdef0>", "forward": "<function ActorCriticPolicy.forward at 0x7f31746fdf80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f31746ff050>", "_predict": "<function ActorCriticPolicy._predict at 0x7f31746ff0e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f31746ff170>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f31746ff200>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f31746ff290>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f31746d63c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1667372339719437985, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAmSEYv5JVnb52dR0/KXAkv8rCOL/jBMk92kbyvjWEkTsWX5u8Hw8Qvyf1ML96D0G+lsF0vzKsPz5nyus+LUwfPsbm4j59osw9ScORPHX2m72upES8eH4Fvurl0D2h6SQ+QoRmv+6mHT+iAI8+bfUuPxaVjD/pm0u/CMsQPy6p+L24O06/0m8kPYeHDT/gRwy/1hbrv1G4Fb+PwPI/Fiegv23HML+1XP69ddBuv94spj4YetI+ypOvv5tZPD+A7c88rcCav4Wdq75CifY+vVu6PUKEZr/uph0/kiRlwG31Lj8l86G+alyoPk22xT7HhYW+IyBNv2atGT5u7aC+yyJfPyYpX77+l48+0jXOviH3Nj4XVT2/KcYWvnUg9DwFIlo/o3m2PhbwTb7mYiq/f0aTPhW4TT+MWps+Llgrv/pZkr93Jo4/7qYdP6IAjz5t9S4/En5Pv+5cSr8nKhE/xZ66vrxfr78OVoi/cOuqPoiXh75J22Y+OSVVP68e9r7PG28/u3sGv3R26L6hvrQ+lwQ6QKgzhD9CCYu+Qg4tP+SutL6yXMg+yKNmP9Jwgb43JGw/QoRmv+6mHT+iAI8+bfUuP5R0lGIu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAANv3pjYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAW5Ak9AAAAABrg3r8AAAAAfy1lPQAAAAB9muc/AAAAAAaW3D0AAAAAdRwBQAAAAADmOLq9AAAAAKvF4r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5Yns2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAXVgGvQAAAAAeePq/AAAAAOKH9D0AAAAABSsAQAAAAAB9kMC9AAAAADNJ4D8AAAAAs+HSvQAAAAA9+e6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbkrUtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgGsgPD0AAAAAZzjrvwAAAACQ7Q6+AAAAAL4O4z8AAAAA9qoAPQAAAABmD+E/AAAAAL7g9T0AAAAAfx7pvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAInvPrQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBS3UY9AAAAAJjy8L8AAAAAALS9PQAAAAAhquI/AAAAADk3A74AAAAASNjxPwAAAADjNaS9AAAAAIjl878AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJZ15XdTHbSMAWyUTegDjAF0lEdAqHgt4TsY23V9lChoBkdAkP2ZzPrv9mgHTegDaAhHQKh5/W7OE/V1fZQoaAZHQJOxCPwNLDhoB03oA2gIR0CogT1IiC8OdX2UKGgGR0CRd0XNTtLMaAdN6ANoCEdAqIKdQbdadXV9lChoBkdAlIe8IZ62OWgHTegDaAhHQKiErK6nR9h1fZQoaAZHQJPz1SJj2BdoB03oA2gIR0CohoTn7pFDdX2UKGgGR0CM89JL/S6UaAdN6ANoCEdAqI3OwkgOjXV9lChoBkdAlIjsO5J9RmgHTegDaAhHQKiPM8Djin51fZQoaAZHQJN9dTn7pFFoB03oA2gIR0CokTMINVindX2UKGgGR0CVbHf51vETaAdN6ANoCEdAqJL/BeokzHV9lChoBkdAkygSxJNCaGgHTegDaAhHQKiaKVKwpvx1fZQoaAZHQJUGJEofCANoB03oA2gIR0Com33iiqQzdX2UKGgGR0CRdQpSrHU+aAdN6ANoCEdAqJ2MjNY8uHV9lChoBkdAkr5Al4TsY2gHTegDaAhHQKifWCYkVvd1fZQoaAZHQJS3RLVWjoJoB03oA2gIR0Copmuy/sVtdX2UKGgGR0CVTGuaF23baAdN6ANoCEdAqKfMMXrMT3V9lChoBkdAlNdiUHIIW2gHTegDaAhHQKip5kKeCkJ1fZQoaAZHQJODRhx5s0poB03oA2gIR0Coq7hTGYKIdX2UKGgGR0CT4WRmbsniaAdN6ANoCEdAqLL4xvegtnV9lChoBkdAk6UPDk2gnWgHTegDaAhHQKi0Sy9mHxl1fZQoaAZHQJPCsPWhAW1oB03oA2gIR0CotlziS7oTdX2UKGgGR0CRkqUrCm/GaAdN6ANoCEdAqLgncnE2pHV9lChoBkdAlBuUbo8p1GgHTegDaAhHQKi/ZpGFzuF1fZQoaAZHQIS1lA5aNdZoB03oA2gIR0CowMHbRF7VdX2UKGgGR0CTJyZTyauwaAdN6ANoCEdAqMLQM2FWXHV9lChoBkdAkD9mzByjpWgHTegDaAhHQKjEi150KZ51fZQoaAZHQI+flMGorFxoB03oA2gIR0Coy/IyCWeIdX2UKGgGR0B5M6LrHEMtaAdN6ANoCEdAqM1ZOP/7znV9lChoBkdAkwKIVh1DB2gHTegDaAhHQKjPZUEPlMh1fZQoaAZHQJOej1uivgZoB03oA2gIR0Co0S8kD6nBdX2UKGgGR0CT3y2L5ylvaAdN6ANoCEdAqNhZ9w3o93V9lChoBkdAk0AhR/EwWWgHTegDaAhHQKjZx4JNTLp1fZQoaAZHQJNz69kBjnVoB03oA2gIR0Co29MgEEDAdX2UKGgGR0B0PU//vOQhaAdN6ANoCEdAqN2oToMa0nV9lChoBkdAk+Sipm29c2gHTegDaAhHQKjmtXpW3jN1fZQoaAZHQJTJR9Wp6yBoB03oA2gIR0Co6A+V9nbqdX2UKGgGR0B70rWH1vl2aAdN6ANoCEdAqOovjU/fO3V9lChoBkdAfTUxXnyNGWgHTegDaAhHQKjsB1hb4ah1fZQoaAZHQJWZu5AhStNoB03oA2gIR0Co805nlGPQdX2UKGgGR0CVN31q33HraAdN6ANoCEdAqPSy/h2nsXV9lChoBkdAlcR39BKL9GgHTegDaAhHQKj2vmOlwcZ1fZQoaAZHQJVn03DNyHVoB03oA2gIR0Co+H8/lhgFdX2UKGgGR0CTLFtqYZ2qaAdN6ANoCEdAqP/IvJzT4XV9lChoBkdAlJXMa4tpVWgHTegDaAhHQKkBKKiwjdJ1fZQoaAZHQInRaKgqVhVoB03oA2gIR0CpA0MG5c1PdX2UKGgGR0CTa0XV9Wp7aAdN6ANoCEdAqQUfvc8DCHV9lChoBkdAlXjrl7tzCGgHTegDaAhHQKkMctwJgLJ1fZQoaAZHQIgHzvy9VWFoB03oA2gIR0CpDcSqMm4RdX2UKGgGR0CTAdT+ee4DaAdN6ANoCEdAqQ/WwgTyrnV9lChoBkdAkYJQw482aWgHTegDaAhHQKkRopLmITJ1fZQoaAZHQJDNF8NQTEloB03oA2gIR0CpGNY5T6zmdX2UKGgGR0CWGrgjhUBGaAdN6ANoCEdAqRop95QgtHV9lChoBkdAlHkYQz1scmgHTegDaAhHQKkcOSOBDoh1fZQoaAZHQJSu2j4593NoB03oA2gIR0CpHf7nHNordX2UKGgGR0CT5GKbKA8TaAdN6ANoCEdAqSUwNqgyunV9lChoBkdAlRbEknkT6GgHTegDaAhHQKkminDR+jN1fZQoaAZHQJSr6BvrGBFoB03oA2gIR0CpKJnM+u/2dX2UKGgGR0CV/A2DQJHBaAdN6ANoCEdAqSpnllsguHV9lChoBkdAj3cfek56t2gHTegDaAhHQKkx99pAUtZ1fZQoaAZHQJKDvG4qgAZoB03oA2gIR0CpM/ChnJ1adX2UKGgGR0CQOxvZyuIRaAdN6ANoCEdAqTb0XtShrXV9lChoBkdAkNh3xnWat2gHTegDaAhHQKk4y6WgOBl1fZQoaAZHQIlVlMGorFxoB03oA2gIR0CpQCEvkBCEdX2UKGgGR0CI3Bqv/zasaAdN6ANoCEdAqUGPWUbDM3V9lChoBkdAfJtiXpnpS2gHTegDaAhHQKlDq4ZMtbt1fZQoaAZHQIVTJvgm7atoB03oA2gIR0CpRaTpPhybdX2UKGgGR0CSAgC5mRNiaAdN6ANoCEdAqUz+hbnoxHV9lChoBkdAj+iqBun/DWgHTegDaAhHQKlOs7+T/yZ1fZQoaAZHQIAhbUCq6vtoB03oA2gIR0CpUdK+ajN7dX2UKGgGR0CM6QxtYSxraAdN6ANoCEdAqVQ0kWykbnV9lChoBkdAkVRt+b3GoGgHTegDaAhHQKlbcOVgQYl1fZQoaAZHQHV6I8yN4qxoB03oA2gIR0CpXM98JD3NdX2UKGgGR0CQRFKWLP2PaAdN6ANoCEdAqV7tyq+8G3V9lChoBkdAkZpUknkT6GgHTegDaAhHQKlgwoNNJvp1fZQoaAZHQIUNa4QSSNhoB03oA2gIR0CpaAMI/qxDdX2UKGgGR0CL8zghr30xaAdN6ANoCEdAqWlfFPznR3V9lChoBkdAhyb/Kp1ifGgHTegDaAhHQKlrj2A5Jbt1fZQoaAZHQIJwNSwW30BoB03oA2gIR0CpbVsfq5bydX2UKGgGR0CBmkIgvDgqaAdN6ANoCEdAqXRzZBcAznV9lChoBkdAimvkfDDTB2gHTegDaAhHQKl13uiN83N1fZQoaAZHQI713UrkKeFoB03oA2gIR0Cpd/ZCF9KFdX2UKGgGR0CDGaPFvQ4TaAdN6ANoCEdAqXnFiKBNEnV9lChoBkdAhv65oXbdrWgHTegDaAhHQKmA+2b5M111fZQoaAZHQIeBvzJ6po9oB03oA2gIR0CpgmO1v2oOdX2UKGgGR0CFV8JhOP/8aAdN6ANoCEdAqYR/ZVXFLnV9lChoBkdAifcnavicXmgHTegDaAhHQKmGP8E3bVV1fZQoaAZHQIjW5R8+ialoB03oA2gIR0CpjUvtUn5SdX2UKGgGR0CHcxlEJBw/aAdN6ANoCEdAqY60Ft8/lnV9lChoBkdAjiMa8Hv+fmgHTegDaAhHQKmQvMC9ytF1fZQoaAZHQIyB8OmR/3FoB03oA2gIR0CpkoNw71ZldX2UKGgGR0CJul4Oc2BKaAdN6ANoCEdAqZnJiobXH3V9lChoBkdAgXI94VymymgHTegDaAhHQKmbH6WPcSJ1fZQoaAZHQIwFbi2lVLloB03oA2gIR0CpnTRs2vSudX2UKGgGR0CRX296Tnq3aAdN6ANoCEdAqZ8BYFJQL3V9lChoBkdAjTBYI8hcJWgHTegDaAhHQKmmNllK9PF1fZQoaAZHQIgJJrrPdEdoB03oA2gIR0Cpp5ot+TePdX2UKGgGR0COzzkmx+rmaAdN6ANoCEdAqanK6WgOBnV9lChoBkdAkGsxG+bmVGgHTegDaAhHQKmrjvCuU2V1fZQoaAZHQJB4tv60pmVoB03oA2gIR0CpsqqNQ0oCdX2UKGgGR0CRkEeQdS2qaAdN6ANoCEdAqbP/fVI7NnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (824 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1126.140968827193, "std_reward": 41.601876963173886, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-11-02T07:54:32.234100"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:44e0814647ca533eeb60a72465bd0c55b89257275465bd7d4232ebc95da8ae8e
|
3 |
+
size 2763
|