|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
from typing import Dict, Sequence |
|
|
|
import pytest |
|
import torch |
|
from peft import LoraModel, PeftModel |
|
from transformers import AutoModelForCausalLM |
|
from trl import AutoModelForCausalLMWithValueHead |
|
|
|
from llamafactory.extras.misc import get_current_device |
|
from llamafactory.hparams import get_infer_args, get_train_args |
|
from llamafactory.model import load_model, load_tokenizer |
|
|
|
|
|
TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-Llama-3") |
|
|
|
TINY_LLAMA_ADAPTER = os.environ.get("TINY_LLAMA_ADAPTER", "llamafactory/tiny-random-Llama-3-lora") |
|
|
|
TINY_LLAMA_VALUEHEAD = os.environ.get("TINY_LLAMA_VALUEHEAD", "llamafactory/tiny-random-Llama-3-valuehead") |
|
|
|
TRAIN_ARGS = { |
|
"model_name_or_path": TINY_LLAMA, |
|
"stage": "sft", |
|
"do_train": True, |
|
"finetuning_type": "lora", |
|
"dataset": "llamafactory/tiny-supervised-dataset", |
|
"dataset_dir": "ONLINE", |
|
"template": "llama3", |
|
"cutoff_len": 1024, |
|
"overwrite_cache": True, |
|
"output_dir": "dummy_dir", |
|
"overwrite_output_dir": True, |
|
"fp16": True, |
|
} |
|
|
|
INFER_ARGS = { |
|
"model_name_or_path": TINY_LLAMA, |
|
"adapter_name_or_path": TINY_LLAMA_ADAPTER, |
|
"finetuning_type": "lora", |
|
"template": "llama3", |
|
"infer_dtype": "float16", |
|
} |
|
|
|
|
|
def load_reference_model(is_trainable: bool = False) -> "LoraModel": |
|
model = AutoModelForCausalLM.from_pretrained( |
|
TINY_LLAMA, torch_dtype=torch.float16, device_map=get_current_device() |
|
) |
|
lora_model = PeftModel.from_pretrained(model, TINY_LLAMA_ADAPTER, is_trainable=is_trainable) |
|
for param in filter(lambda p: p.requires_grad, lora_model.parameters()): |
|
param.data = param.data.to(torch.float32) |
|
|
|
return lora_model |
|
|
|
|
|
def compare_model(model_a: "torch.nn.Module", model_b: "torch.nn.Module", diff_keys: Sequence[str] = []): |
|
state_dict_a = model_a.state_dict() |
|
state_dict_b = model_b.state_dict() |
|
assert set(state_dict_a.keys()) == set(state_dict_b.keys()) |
|
for name in state_dict_a.keys(): |
|
if any(key in name for key in diff_keys): |
|
assert torch.allclose(state_dict_a[name], state_dict_b[name], rtol=1e-4, atol=1e-5) is False |
|
else: |
|
assert torch.allclose(state_dict_a[name], state_dict_b[name], rtol=1e-4, atol=1e-5) is True |
|
|
|
|
|
@pytest.fixture |
|
def fix_valuehead_cpu_loading(): |
|
def post_init(self: "AutoModelForCausalLMWithValueHead", state_dict: Dict[str, "torch.Tensor"]): |
|
state_dict = {k[7:]: state_dict[k] for k in state_dict.keys() if k.startswith("v_head.")} |
|
self.v_head.load_state_dict(state_dict, strict=False) |
|
del state_dict |
|
|
|
AutoModelForCausalLMWithValueHead.post_init = post_init |
|
|
|
|
|
def test_lora_train_qv_modules(): |
|
model_args, _, _, finetuning_args, _ = get_train_args({"lora_target": "q_proj,v_proj", **TRAIN_ARGS}) |
|
tokenizer_module = load_tokenizer(model_args) |
|
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True) |
|
|
|
linear_modules = set() |
|
for name, param in model.named_parameters(): |
|
if any(module in name for module in ["lora_A", "lora_B"]): |
|
linear_modules.add(name.split(".lora_", maxsplit=1)[0].split(".")[-1]) |
|
assert param.requires_grad is True |
|
assert param.dtype == torch.float32 |
|
else: |
|
assert param.requires_grad is False |
|
assert param.dtype == torch.float16 |
|
|
|
assert linear_modules == {"q_proj", "v_proj"} |
|
|
|
|
|
def test_lora_train_all_modules(): |
|
model_args, _, _, finetuning_args, _ = get_train_args({"lora_target": "all", **TRAIN_ARGS}) |
|
tokenizer_module = load_tokenizer(model_args) |
|
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True) |
|
|
|
linear_modules = set() |
|
for name, param in model.named_parameters(): |
|
if any(module in name for module in ["lora_A", "lora_B"]): |
|
linear_modules.add(name.split(".lora_", maxsplit=1)[0].split(".")[-1]) |
|
assert param.requires_grad is True |
|
assert param.dtype == torch.float32 |
|
else: |
|
assert param.requires_grad is False |
|
assert param.dtype == torch.float16 |
|
|
|
assert linear_modules == {"q_proj", "k_proj", "v_proj", "o_proj", "up_proj", "gate_proj", "down_proj"} |
|
|
|
|
|
def test_lora_train_extra_modules(): |
|
model_args, _, _, finetuning_args, _ = get_train_args( |
|
{"lora_target": "all", "additional_target": "embed_tokens,lm_head", **TRAIN_ARGS} |
|
) |
|
tokenizer_module = load_tokenizer(model_args) |
|
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True) |
|
|
|
extra_modules = set() |
|
for name, param in model.named_parameters(): |
|
if any(module in name for module in ["lora_A", "lora_B"]): |
|
assert param.requires_grad is True |
|
assert param.dtype == torch.float32 |
|
elif "modules_to_save" in name: |
|
extra_modules.add(name.split(".modules_to_save", maxsplit=1)[0].split(".")[-1]) |
|
assert param.requires_grad is True |
|
assert param.dtype == torch.float32 |
|
else: |
|
assert param.requires_grad is False |
|
assert param.dtype == torch.float16 |
|
|
|
assert extra_modules == {"embed_tokens", "lm_head"} |
|
|
|
|
|
def test_lora_train_old_adapters(): |
|
model_args, _, _, finetuning_args, _ = get_train_args( |
|
{"adapter_name_or_path": TINY_LLAMA_ADAPTER, "create_new_adapter": False, **TRAIN_ARGS} |
|
) |
|
tokenizer_module = load_tokenizer(model_args) |
|
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True) |
|
|
|
ref_model = load_reference_model(is_trainable=True) |
|
compare_model(model, ref_model) |
|
|
|
|
|
def test_lora_train_new_adapters(): |
|
model_args, _, _, finetuning_args, _ = get_train_args( |
|
{"adapter_name_or_path": TINY_LLAMA_ADAPTER, "create_new_adapter": True, **TRAIN_ARGS} |
|
) |
|
tokenizer_module = load_tokenizer(model_args) |
|
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True) |
|
|
|
ref_model = load_reference_model(is_trainable=True) |
|
compare_model( |
|
model, ref_model, diff_keys=["q_proj", "k_proj", "v_proj", "o_proj", "up_proj", "gate_proj", "down_proj"] |
|
) |
|
|
|
|
|
@pytest.mark.usefixtures("fix_valuehead_cpu_loading") |
|
def test_lora_train_valuehead(): |
|
model_args, _, finetuning_args, _ = get_infer_args(INFER_ARGS) |
|
tokenizer_module = load_tokenizer(model_args) |
|
model = load_model( |
|
tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True, add_valuehead=True |
|
) |
|
|
|
ref_model: "AutoModelForCausalLMWithValueHead" = AutoModelForCausalLMWithValueHead.from_pretrained( |
|
TINY_LLAMA_VALUEHEAD, torch_dtype=torch.float16, device_map=get_current_device() |
|
) |
|
state_dict = model.state_dict() |
|
ref_state_dict = ref_model.state_dict() |
|
|
|
assert torch.allclose(state_dict["v_head.summary.weight"], ref_state_dict["v_head.summary.weight"]) |
|
assert torch.allclose(state_dict["v_head.summary.bias"], ref_state_dict["v_head.summary.bias"]) |
|
|
|
|
|
def test_lora_inference(): |
|
model_args, _, finetuning_args, _ = get_infer_args(INFER_ARGS) |
|
tokenizer_module = load_tokenizer(model_args) |
|
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=False) |
|
|
|
ref_model = load_reference_model().merge_and_unload() |
|
compare_model(model, ref_model) |
|
|