# Copyright 2024 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from transformers import AutoTokenizer from llamafactory.data import get_template_and_fix_tokenizer TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-Llama-3") MESSAGES = [ {"role": "user", "content": "How are you"}, {"role": "assistant", "content": "I am fine!"}, {"role": "user", "content": "你好"}, {"role": "assistant", "content": "很高兴认识你!"}, ] def test_encode_oneturn(): tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA) template = get_template_and_fix_tokenizer(tokenizer, name="llama3") prompt_ids, answer_ids = template.encode_oneturn(tokenizer, MESSAGES) assert tokenizer.decode(prompt_ids) == ( "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\nHow are you<|eot_id|>" "<|start_header_id|>assistant<|end_header_id|>\n\nI am fine!<|eot_id|>" "<|start_header_id|>user<|end_header_id|>\n\n你好<|eot_id|>" "<|start_header_id|>assistant<|end_header_id|>\n\n" ) assert tokenizer.decode(answer_ids) == "很高兴认识你!<|eot_id|>" def test_encode_multiturn(): tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA) template = get_template_and_fix_tokenizer(tokenizer, name="llama3") encoded_pairs = template.encode_multiturn(tokenizer, MESSAGES) assert tokenizer.decode(encoded_pairs[0][0]) == ( "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\nHow are you<|eot_id|>" "<|start_header_id|>assistant<|end_header_id|>\n\n" ) assert tokenizer.decode(encoded_pairs[0][1]) == "I am fine!<|eot_id|>" assert tokenizer.decode(encoded_pairs[1][0]) == ( "<|start_header_id|>user<|end_header_id|>\n\n你好<|eot_id|>" "<|start_header_id|>assistant<|end_header_id|>\n\n" ) assert tokenizer.decode(encoded_pairs[1][1]) == "很高兴认识你!<|eot_id|>" def test_jinja_template(): tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA) ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA) get_template_and_fix_tokenizer(tokenizer, name="llama3") assert tokenizer.chat_template != ref_tokenizer.chat_template assert tokenizer.apply_chat_template(MESSAGES) == ref_tokenizer.apply_chat_template(MESSAGES) def test_qwen_template(): tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-7B-Instruct") template = get_template_and_fix_tokenizer(tokenizer, name="qwen") prompt_ids, answer_ids = template.encode_oneturn(tokenizer, MESSAGES) assert tokenizer.decode(prompt_ids) == ( "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n" "<|im_start|>user\nHow are you<|im_end|>\n" "<|im_start|>assistant\nI am fine!<|im_end|>\n" "<|im_start|>user\n你好<|im_end|>\n" "<|im_start|>assistant\n" ) assert tokenizer.decode(answer_ids) == "很高兴认识你!<|im_end|>"