File size: 6,244 Bytes
a1a31ea
2534733
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94bd33c
8da45a8
 
 
 
2534733
800175d
a1a31ea
 
 
2f66b4a
a3f055a
 
 
 
 
67be3d4
a3f055a
 
 
 
 
2f66b4a
8877ba1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f66b4a
8877ba1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7283b95
 
 
 
 
 
 
 
 
 
 
 
 
8877ba1
7283b95
 
8877ba1
7283b95
 
 
 
 
 
 
 
 
 
 
 
 
2f66b4a
 
8877ba1
 
 
2f66b4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3f055a
 
 
2f66b4a
 
 
 
 
 
 
 
 
 
a3f055a
94bd33c
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
---
language:
- en
- de
- es
- fr
- hi
- it
- ja
- ko
- pl
- pt
- ru
- tr
- zh
thumbnail: >-
  https://user-images.githubusercontent.com/5068315/230698495-cbb1ced9-c911-4c9a-941d-a1a4a1286ac6.png
library: bark
license: mit
tags:
- bark
- audio
- text-to-speech
pipeline_tag: text-to-speech
inference: false
---

# Bark

Bark is a transformer-based text-to-audio model created by [Suno](https://www.suno.ai). 
Bark can generate highly realistic, multilingual speech as well as other audio - including music, 
background noise and simple sound effects. The model can also produce nonverbal 
communications like laughing, sighing and crying. To support the research community, 
we are providing access to pretrained model checkpoints ready for inference.

The original github repo and model card can be found [here](https://github.com/suno-ai/bark).

This model is meant for research purposes only. 
The model output is not censored and the authors do not endorse the opinions in the generated content. 
Use at your own risk.

Two checkpoints are released:
- [small](https://huggingface.co/suno/bark-small)
- [**large** (this checkpoint)](https://huggingface.co/suno/bark)


## Example

Try out Bark yourself!

* Bark Colab:

<a target="_blank" href="https://colab.research.google.com/drive/1eJfA2XUa-mXwdMy7DoYKVYHI1iTd9Vkt?usp=sharing">
  <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
</a>

* Hugging Face Colab:

<a target="_blank" href="https://colab.research.google.com/drive/1dWWkZzvu7L9Bunq9zvD-W02RFUXoW-Pd?usp=sharing"> 
  <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/> 
</a>

* Hugging Face Demo:

<a target="_blank" href="https://huggingface.co/spaces/suno/bark">
  <img src="https://huggingface.co/datasets/huggingface/badges/raw/main/open-in-hf-spaces-sm.svg" alt="Open in HuggingFace"/>
</a>


## 🤗 Transformers Usage


You can run Bark locally with the 🤗 Transformers library from version 4.31.0 onwards.

1. First install the 🤗 [Transformers library](https://github.com/huggingface/transformers) from main:

```
pip install git+https://github.com/huggingface/transformers.git
```

2. Run the following Python code to generate speech samples:

```python
from transformers import AutoProcessor, AutoModel


processor = AutoProcessor.from_pretrained("suno/bark-small")
model = AutoModel.from_pretrained("suno/bark-small")

inputs = processor(
    text=["Hello, my name is Suno. And, uh — and I like pizza. [laughs] But I also have other interests such as playing tic tac toe."],
    return_tensors="pt",
)

speech_values = model.generate(**inputs, do_sample=True)
```

3. Listen to the speech samples either in an ipynb notebook:

```python
from IPython.display import Audio

sampling_rate = model.generation_config.sample_rate
Audio(speech_values.cpu().numpy().squeeze(), rate=sampling_rate)
```

Or save them as a `.wav` file using a third-party library, e.g. `scipy`:

```python
import scipy

sampling_rate = model.config.sample_rate
scipy.io.wavfile.write("bark_out.wav", rate=sampling_rate, data=speech_values.cpu().numpy().squeeze())
```

For more details on using the Bark model for inference using the 🤗 Transformers library, refer to the [Bark docs](https://huggingface.co/docs/transformers/model_doc/bark).

## Suno Usage

You can also run Bark locally through the original [Bark library]((https://github.com/suno-ai/bark):

1. First install the [`bark` library](https://github.com/suno-ai/bark)

3. Run the following Python code:

```python
from bark import SAMPLE_RATE, generate_audio, preload_models
from IPython.display import Audio

# download and load all models
preload_models()

# generate audio from text
text_prompt = """
     Hello, my name is Suno. And, uh — and I like pizza. [laughs] 
     But I also have other interests such as playing tic tac toe.
"""
speech_array = generate_audio(text_prompt)

# play text in notebook
Audio(speech_array, rate=SAMPLE_RATE)
```

[pizza.webm](https://user-images.githubusercontent.com/5068315/230490503-417e688d-5115-4eee-9550-b46a2b465ee3.webm)


To save `audio_array` as a WAV file:

```python
from scipy.io.wavfile import write as write_wav

write_wav("/path/to/audio.wav", SAMPLE_RATE, audio_array)
```

## Model Details


The following is additional information about the models released here. 

Bark is a series of three transformer models that turn text into audio.

### Text to semantic tokens
 - Input: text, tokenized with [BERT tokenizer from Hugging Face](https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertTokenizer)
 - Output: semantic tokens that encode the audio to be generated

### Semantic to coarse tokens
 - Input: semantic tokens
 - Output: tokens from the first two codebooks of the [EnCodec Codec](https://github.com/facebookresearch/encodec) from facebook

### Coarse to fine tokens
 - Input: the first two codebooks from EnCodec
 - Output: 8 codebooks from EnCodec

### Architecture
|           Model           | Parameters | Attention  | Output Vocab size |  
|:-------------------------:|:----------:|------------|:-----------------:|
|  Text to semantic tokens  |    80/300 M    | Causal     |       10,000      |
| Semantic to coarse tokens |    80/300 M    | Causal     |     2x 1,024      |
|   Coarse to fine tokens   |    80/300 M    | Non-causal |     6x 1,024      |


### Release date
April 2023

## Broader Implications
We anticipate that this model's text to audio capabilities can be used to improve accessbility tools in a variety of languages. 
 
While we hope that this release will enable users to express their creativity and build applications that are a force
for good, we acknowledge that any text to audio model has the potential for dual use. While it is not straightforward
to voice clone known people with Bark, it can still be used for nefarious purposes. To further reduce the chances of unintended use of Bark, 
we also release a simple classifier to detect Bark-generated audio with high accuracy (see notebooks section of the main repository).

## License

Bark is licensed under the [MIT License](https://github.com/suno-ai/bark/blob/main/LICENSE), meaning it's available for commercial use.