update README.md
Browse files
README.md
CHANGED
@@ -10,7 +10,7 @@ tags:
|
|
10 |
|
11 |
Link to github: [here](https://github.com/sunzeyeah/RLHF)
|
12 |
|
13 |
-
|
14 |
|
15 |
本仓库由[THUDM/chatglm-6b](https://huggingface.co/THUDM/chatglm-6b) fork而来,原仓库实现了PyTorch版本的ChatGLM模型,该模型有60亿参数量,模型权重文件以FP16格式存储。
|
16 |
|
@@ -20,19 +20,24 @@ This repository is forked from [THUDM/chatglm-6b](https://huggingface.co/THUDM/c
|
|
20 |
|
21 |
It is slightly different from the original ChatGLM implementation to support the ChatGPT training pipeline in this github repo: [sunzeyeah/RLHF](https://github.com/sunzeyeah/RLHF).
|
22 |
|
|
|
23 |
|
24 |
-
|
25 |
ChatGLM-6B 是一个开源的、支持中英双语问答的对话语言模型,基于 [General Language Model (GLM)](https://github.com/THUDM/GLM) 架构,具有 62 亿参数。结合模型量化技术,用户可以在消费级的显卡上进行本地部署(INT4 量化级别下最低只需 6GB 显存)。ChatGLM-6B 使用了和 [ChatGLM](https://chatglm.cn) 相同的技术,针对中文问答和对话进行了优化。经过约 1T 标识符的中英双语训练,辅以监督微调、反馈自助、人类反馈强化学习等技术的加持,62 亿参数的 ChatGLM-6B 已经能生成相当符合人类偏好的回答。
|
26 |
|
27 |
ChatGLM-6B is an open bilingual language model based on [General Language Model (GLM)](https://github.com/THUDM/GLM) framework, with 6.2 billion parameters. With the quantization technique, users can deploy locally on consumer-grade graphics cards (only 6GB of GPU memory is required at the INT4 quantization level). ChatGLM-6B uses technology similar to ChatGPT, optimized for Chinese QA and dialogue. The model is trained for about 1T tokens of Chinese and English corpus, supplemented by supervised fine-tuning, feedback bootstrap, and reinforcement learning wit human feedback. With only about 6.2 billion parameters, the model is able to generate answers that are in line with human preference.
|
28 |
|
29 |
-
|
|
|
|
|
30 |
|
31 |
```shell
|
32 |
pip install protobuf==3.20.0 transformers==4.26.1 icetk cpm_kernels
|
33 |
```
|
34 |
|
35 |
-
|
|
|
|
|
36 |
|
37 |
可以通过如下代码调用 ChatGLM-6B 模型来生成对话:
|
38 |
|
|
|
10 |
|
11 |
Link to github: [here](https://github.com/sunzeyeah/RLHF)
|
12 |
|
13 |
+
---
|
14 |
|
15 |
本仓库由[THUDM/chatglm-6b](https://huggingface.co/THUDM/chatglm-6b) fork而来,原仓库实现了PyTorch版本的ChatGLM模型,该模型有60亿参数量,模型权重文件以FP16格式存储。
|
16 |
|
|
|
20 |
|
21 |
It is slightly different from the original ChatGLM implementation to support the ChatGPT training pipeline in this github repo: [sunzeyeah/RLHF](https://github.com/sunzeyeah/RLHF).
|
22 |
|
23 |
+
---
|
24 |
|
25 |
+
# 介绍
|
26 |
ChatGLM-6B 是一个开源的、支持中英双语问答的对话语言模型,基于 [General Language Model (GLM)](https://github.com/THUDM/GLM) 架构,具有 62 亿参数。结合模型量化技术,用户可以在消费级的显卡上进行本地部署(INT4 量化级别下最低只需 6GB 显存)。ChatGLM-6B 使用了和 [ChatGLM](https://chatglm.cn) 相同的技术,针对中文问答和对话进行了优化。经过约 1T 标识符的中英双语训练,辅以监督微调、反馈自助、人类反馈强化学习等技术的加持,62 亿参数的 ChatGLM-6B 已经能生成相当符合人类偏好的回答。
|
27 |
|
28 |
ChatGLM-6B is an open bilingual language model based on [General Language Model (GLM)](https://github.com/THUDM/GLM) framework, with 6.2 billion parameters. With the quantization technique, users can deploy locally on consumer-grade graphics cards (only 6GB of GPU memory is required at the INT4 quantization level). ChatGLM-6B uses technology similar to ChatGPT, optimized for Chinese QA and dialogue. The model is trained for about 1T tokens of Chinese and English corpus, supplemented by supervised fine-tuning, feedback bootstrap, and reinforcement learning wit human feedback. With only about 6.2 billion parameters, the model is able to generate answers that are in line with human preference.
|
29 |
|
30 |
+
---
|
31 |
+
|
32 |
+
# 软件依赖
|
33 |
|
34 |
```shell
|
35 |
pip install protobuf==3.20.0 transformers==4.26.1 icetk cpm_kernels
|
36 |
```
|
37 |
|
38 |
+
---
|
39 |
+
|
40 |
+
# 代码调用
|
41 |
|
42 |
可以通过如下代码调用 ChatGLM-6B 模型来生成对话:
|
43 |
|