sunzeyeah commited on
Commit
5ff7996
1 Parent(s): 8b6bc47

update README.md

Browse files
Files changed (1) hide show
  1. README.md +9 -4
README.md CHANGED
@@ -10,7 +10,7 @@ tags:
10
 
11
  Link to github: [here](https://github.com/sunzeyeah/RLHF)
12
 
13
- # ChatGLM-6B
14
 
15
  本仓库由[THUDM/chatglm-6b](https://huggingface.co/THUDM/chatglm-6b) fork而来,原仓库实现了PyTorch版本的ChatGLM模型,该模型有60亿参数量,模型权重文件以FP16格式存储。
16
 
@@ -20,19 +20,24 @@ This repository is forked from [THUDM/chatglm-6b](https://huggingface.co/THUDM/c
20
 
21
  It is slightly different from the original ChatGLM implementation to support the ChatGPT training pipeline in this github repo: [sunzeyeah/RLHF](https://github.com/sunzeyeah/RLHF).
22
 
 
23
 
24
- ## 介绍
25
  ChatGLM-6B 是一个开源的、支持中英双语问答的对话语言模型,基于 [General Language Model (GLM)](https://github.com/THUDM/GLM) 架构,具有 62 亿参数。结合模型量化技术,用户可以在消费级的显卡上进行本地部署(INT4 量化级别下最低只需 6GB 显存)。ChatGLM-6B 使用了和 [ChatGLM](https://chatglm.cn) 相同的技术,针对中文问答和对话进行了优化。经过约 1T 标识符的中英双语训练,辅以监督微调、反馈自助、人类反馈强化学习等技术的加持,62 亿参数的 ChatGLM-6B 已经能生成相当符合人类偏好的回答。
26
 
27
  ChatGLM-6B is an open bilingual language model based on [General Language Model (GLM)](https://github.com/THUDM/GLM) framework, with 6.2 billion parameters. With the quantization technique, users can deploy locally on consumer-grade graphics cards (only 6GB of GPU memory is required at the INT4 quantization level). ChatGLM-6B uses technology similar to ChatGPT, optimized for Chinese QA and dialogue. The model is trained for about 1T tokens of Chinese and English corpus, supplemented by supervised fine-tuning, feedback bootstrap, and reinforcement learning wit human feedback. With only about 6.2 billion parameters, the model is able to generate answers that are in line with human preference.
28
 
29
- ## 软件依赖
 
 
30
 
31
  ```shell
32
  pip install protobuf==3.20.0 transformers==4.26.1 icetk cpm_kernels
33
  ```
34
 
35
- ## 代码调用
 
 
36
 
37
  可以通过如下代码调用 ChatGLM-6B 模型来生成对话:
38
 
 
10
 
11
  Link to github: [here](https://github.com/sunzeyeah/RLHF)
12
 
13
+ ---
14
 
15
  本仓库由[THUDM/chatglm-6b](https://huggingface.co/THUDM/chatglm-6b) fork而来,原仓库实现了PyTorch版本的ChatGLM模型,该模型有60亿参数量,模型权重文件以FP16格式存储。
16
 
 
20
 
21
  It is slightly different from the original ChatGLM implementation to support the ChatGPT training pipeline in this github repo: [sunzeyeah/RLHF](https://github.com/sunzeyeah/RLHF).
22
 
23
+ ---
24
 
25
+ # 介绍
26
  ChatGLM-6B 是一个开源的、支持中英双语问答的对话语言模型,基于 [General Language Model (GLM)](https://github.com/THUDM/GLM) 架构,具有 62 亿参数。结合模型量化技术,用户可以在消费级的显卡上进行本地部署(INT4 量化级别下最低只需 6GB 显存)。ChatGLM-6B 使用了和 [ChatGLM](https://chatglm.cn) 相同的技术,针对中文问答和对话进行了优化。经过约 1T 标识符的中英双语训练,辅以监督微调、反馈自助、人类反馈强化学习等技术的加持,62 亿参数的 ChatGLM-6B 已经能生成相当符合人类偏好的回答。
27
 
28
  ChatGLM-6B is an open bilingual language model based on [General Language Model (GLM)](https://github.com/THUDM/GLM) framework, with 6.2 billion parameters. With the quantization technique, users can deploy locally on consumer-grade graphics cards (only 6GB of GPU memory is required at the INT4 quantization level). ChatGLM-6B uses technology similar to ChatGPT, optimized for Chinese QA and dialogue. The model is trained for about 1T tokens of Chinese and English corpus, supplemented by supervised fine-tuning, feedback bootstrap, and reinforcement learning wit human feedback. With only about 6.2 billion parameters, the model is able to generate answers that are in line with human preference.
29
 
30
+ ---
31
+
32
+ # 软件依赖
33
 
34
  ```shell
35
  pip install protobuf==3.20.0 transformers==4.26.1 icetk cpm_kernels
36
  ```
37
 
38
+ ---
39
+
40
+ # 代码调用
41
 
42
  可以通过如下代码调用 ChatGLM-6B 模型来生成对话:
43